FISH-AGRO | Оборудование для разведения рыб
Технологии, проекты и оборудование для разведения рыбы в УЗВ. Рыбоводство и рыба разведение в Установках Замкнутого Водоснабжения! Тилапиа, Клариевый Сом, Осетр, Форель.
+7(925) 536-30-20

Оксигенация и озонирование

    Оксигенация и Озонирование.

 

 Оксигенация (оксигенирование) – насыщение воды растворенным кислородом с использованием кислородного газа, который содержит большую долю кислорода, чем атмосферный воздух

   В рыбоводстве применяются следующие разновидности осксигенации воды:

  • пневматическая оксигенация, суть которой состоит в подаче кислорода в воду через мелкодисперсные распылители. Это не самый эффективный метода, так как КПД использования кислорода, как правило, невысок. Применяется в основном при перевозке живой рыбы;
  • механическая оксигенация, суть которой состоит в механическом смешение кислорода с водой. Это более эффективный метод, позволяющий растворять кислород почти целиком. Механические оксигенаторы выпускаются несколькими зарубежными фирмами и устанавливаются, как правило, непосредственно в рыбоводные бассейны или подающие каналы;
  • распылительная оксигенация под давлением, суть которой состоит в распылении воды в кислороде внутри герметичного оксигенатора(например, оксигенаторы конструкции И.В. Проскуренко). Это достаточно эффективный метод, позволяющий насыщать воду кислородом до высоких концентраций. При этом метод довольно энергозатратный, требующий высокого давления как воды, так и кислорода;
  • струйная оксигенация, основанная на гидродинамическом эффекте увеличения скорости в сужении, что обеспечивает как эжекцию (всасывание) так и дробление кислорода в воде, в чистом виде в рыбоводстве не применяется и является слишком энергозатратным;
  • оксигенация с применением оксгенационных конусов. Суть этой технологии сводится к тому, что вертикально установленный широкой частью вниз конус является ловушкой для пузырьков газа при движении воды сверху вниз. Из-за того, что в узкой части конуса скорость движения воды выше скорости всплывания пузырьков, а в нижней части скорость движения воды ниже этой скорости, газ не может никуда выйти из конуса. Если соотношение газа и воды, а также давление внутри конуса подобраны правильно, то весь введённый в него кислород нацело растворяется в воде.

   В качестве источников кислорода для систем осксигенации могут использоваться как покупной сжатый или сжиженный кислород, так и кислород, вырабатываемый на месте из воздуха при помощи PSA или VPSA генераторов кислорода. Использование сжатого кислорода в баллонах экономически невыгодно и используется только при перевозке рыбы или в аварийных ситуациях. В Европе многие рыбные фермеры используют сжиженный кислород, тогда как в бывшем СССР генераторы кислорода оказываются экономически выгоднее. Как правило, чем выше давление кислорода на выходе генератора, тем больше он потребляет электроэнергии. Кроме этого, кислород, полученный из баллонов или жидкого кислорода, не пригоден в использовании для синтеза озона.

   Применение осксигенации экономически оправдано во всех случаях, когда рыбу растят в бассейнах или ваннах, но не садках или прудах. При этом работа должна быть организована таким образом, чтобы концентрация кислорода в ёмкостях с рыбой не превышала 150% от насыщения (равновесия с атмосферным воздухом), более высокие концентрации не сказываются положительно на выращивание рыбы. При выращивании малька и молоди желательно не превышать 100 – 110% чтобы молодь имела впоследствии адаптивные свойства жить и расти при разных и реальных концентрациях растворенного кислорода.

   Нами разработана и внедрена собственная система осксигенации, которая представляет собой сочетание конусного и струйного методов. При этом используются конусы из нержавеющей стали собственного производства, которые обладают исключительной коррозионной стойкостью. Они могут работать как при заданном давлении, так и без давления и обеспечивать желаемую концентрацию кислорода (до 500%) в желаемом количестве воды. Применение струйных аппаратов перед конусами позволяют повысить эффективность их работы, кроме того снимают все требования к давлению кислорода, что позволяет использовать генераторы кислорода низкого давления, которые потребляют меньше электроэнергии. Таким образом, оксигенация может быть оптимизирована по затратам электроэнергии. Все материалы, которые используются в системе осксигенации, являются озоностойкими, поэтому в такую систему в любое время на линии кислорода может быть врезан генератор озона подходящей производительности и система обеспечит растворение озона в воде вместе с кислородом без необходимости что-либо менять и утилизировать остаточный нерастворённый озон в газе.

 

   Озонирование – обработка воды озоно-кислородной или озоно-воздушной смесью с целью очистки и/или обеззараживания.

    Озонирование воды в рыбоводстве может быть двух видов. Собственно, озонирование, целесообразно совмещенное с оксигенацией, позволяет вводить в воду до 4-5 мг озона на литр воды (чаще всего так много не нужно) с целью в первую очередь обеззараживания воды, также и для улучшения её химического состава (снижение нитритов, окисление некоторых токсичных органических загрязнений, снижение цветности, дезодорация). При таком подходе на каждый миллиграмм озона в воду вводится 10-15 мг кислорода. Делается такое озонирование вместе с вышеописанной нашей системой осксигенации путём врезания в линию кислорода генератора озона. Современные генераторы озона позволяют электрическим путём регулировать производство озона от 0 до 100% их производительности, т.о. можно легко регулировать дозу озона в зависимости от загрязнённости воды так чтобы не вызвать отравление остаточным в воде озоном рыбы и получать нужную степень обеззараживания и очистки.

   Второй вид озонирования является в чём-то аналогом флотации для морской воды. При этом пресная вода пенится гораздо хуже морской, поэтому для того чтобы она пенилась, используется озоно-водушная смесь (чаще всего разбавленная воздухом озоно-кислородная смесь), мелкодисперсные озоностойкие распылители и другая конструкция реакторов чем для флотаторов (протеин-скимеров) морской воды. Такая обработка воды не насыщает её растворённым кислородом выше 100% и не гарантирует высокой степени обеззараживания или окисления нитритов, зато она даёт эффект удаления мелкодисперсных и коллоидных загрязнений и делает воду прозрачной при относительно небольших затратах электроэнергии.

Новые модели озонаторов и генераторов кислорода на нашем заводе. АКЦИЯ!!!

Наши новые технологии по очистке воды, воздуха...

Генераторы озона

Серийные установки очистки и обеззараживания воды

Установки очистки и обеззараживания сточной воды

Установки озоновой очистки и обеззараживания воздуха

Установки очистки и обеззараживания воды в пищевой промышленности

Установки очистки и обеззараживания оборотной воды в бассейнах и в УЗВ

НАПОРНЫЕ УСТАНОВКИ ОЗОНИРОВАНИЯ И СТЕРИЛИЗАЦИИ ВОДЫ СЕРИИ VANECO (FOOD)

НАПОРНЫЕ УСТАНОВКИ ОЗОНИРОВАНИЯ И СТЕРИЛИЗАЦИИ ВОДЫ СЕРИИ VANECO (FOOD)

НАПОРНЫЕ УСТАНОВКИ ОЗОНИРОВАНИЯ И СТЕРИЛИЗАЦИИ ВОДЫ СЕРИИ Vaneco-1 (FOOD) С НАПОРНОЙ КОНТАКТНОЙ ЕМКОСТЬЮ (ПРОИЗВОДИТЕЛЬНОСТЬ ДО 100 М3/ЧАС)
Напорные установки озонирования и стерилизации воды

 

Расшифровка параметров для выбора модели при заказе Vaneco-1 Food 100-100К-200-ПОО)

  • 100 - максимальная производительность в м3/час
  • 100 - производительность озонатора в г/час (К- озонатор с концентратором кислорода)
  • 200 - объем контактной емкости в л
  • ПОО - (комплектация системой автоматического поддержания и контроля остаточного озона в воде)

 

Обозначение установки Габаритные размеры (мм) Потребляемая мощность (Вт)
Vaneco-1 (Fоod 10-10К-40) 600 х 500 х 1250 100
Vaneco-1 (Fоod 20-20К-60) 600 х 500 х 1250 200
Vaneco-1 (Fоod 30-30К-80) 600 х 500 х 1250 300
Vaneco-1 (Fоod 50-50К-100) 600 х 600 х 1300 500
Vaneco-1 (Fоod 100-100К-200) 700 х 700 х 1550 1000

УСТАНОВКИ ОЗОНИРОВАНИЯ И СТЕРИЛИЗАЦИИ ВОДЫ СЕРИИ VANECO-1 (POOL)

УСТАНОВКИ ОЗОНИРОВАНИЯ И СТЕРИЛИЗАЦИИ ВОДЫ СЕРИИ VANECO-1 (POOL)

УСТАНОВКИ ОЗОНИРОВАНИЯ И СТЕРИЛИЗАЦИИ ВОДЫ СЕРИИ Vaneco-1 (Pool) С ОТКРЫТОЙ ИЛИ НАПОРНОЙ КОНТАКТНОЙ ЕМКОСТЬЮ (ПРОИЗВОДИТЕЛЬНОСТЬ ДО 100 М3/ЧАС)
Установки озонирования и стерилизации воды
  • Предельная компактность и экономичность при любой производительности установки
  • Высокая степень заводской готовности
  • Мгновенный выход на рабочий режим
  • Отсутствие расходных материалов и затрат на обслуживание

В пищевой промышленности обычно используется питьевая вода, полученная в результате очистки воды из артезианских источников или реже после доочистки водопроводной воды. Эта часть технологии водоподготовки в пищевой промышленности использует подходы, описанные в соответствующих разделах. К особенностям, имеющим отношение именно к пищевой промышленности, относится возможность регулировки концентрации остаточного озона в очищенной воде. Если доза остаточного озона в питьевой воде, подаваемой в водопровод, строго регламентирована, то на участках технологического цикла водоподготовки в пищевой промышленности концентрация остаточного озона может быть больше. Озон- это абсолютно экологически чистый стерилизующий агент ,потому что время его жизни в воде ограничено несколькими минутами, после чего он превращается в обычный кислород. Это свойство озона позволяет использовать саму озонированную питьевую воду, как средство непрерывной стерилизации трубопроводов, емкостей, фильтров и другого оборудования, участвующего в процессе водоподготовки. Выходная остаточная концентрация озона после процесса очистки может быть доведена до любого желаемого уровня. Этот подход особенно плодотворен при бутилировании питьевой и минеральной воды. Контролируемая концентрация остаточного озона в воде, заливаемой в бутылку, надежно стерилизует и саму бутылку, и пробку, и воздух в бутылке.Через короткое время озон исчезает, оставляя вместо себя кислород, улучшающий вкусовые качества воды. Применение этой технологии позволяет увеличить срок хранения воды и полностью исключить возможность ее бактериального загрязнения. Установки серии Vaneco-1 Pool комплектуются высокоэффективными промышленными кислородными озонаторами серии К или озонаторами неосушенного воздуха серии Q.

Установка состоит из контактной емкости - газоотделителя необходимого объема, деструктора остаточного озона в газе .При необходимости установка комплектуется также повышающим насосом и системой поддержания концентрации остаточного озона ПОО.

Расшифровка параметров для выбора модели при заказе Vaneco-1 (Pool 100-100К-220-ПОО)

  • 100 - максимальная производительность в м3/час
  • 100 - производительность озонатора в г/час (К - озонатор с концентратором кислорода)
  • 220 - объем контактной емкости в л
  • ПОО - (комплектация системой автоматического поддержания и контроля остаточного озона в воде
Обозначение установки Габаритные размеры (мм) Потребляемая мощность (Вт)
Vaneco-1 (Pool 3-10К-20) 600 х 500 х 1250 100
Vaneco-1 (Pool 5-20К-30) 600 х 500 х 1250 200
Vaneco-1 (Pool 10-30К-40) 600 х 500 х 1250 300
Vaneco-1 (Pool 15-50К-40) 600 х 600 х 1300 500
Vaneco-1 (Pool 20-100К-50) 700 х 700 х 1550 1000

КИСЛОРОДНЫЕ ОЗОНАТОРЫ СЕРИИ K

КИСЛОРОДНЫЕ ОЗОНАТОРЫ СЕРИИ K

КИСЛОРОДНЫЕ ОЗОНАТОРЫ СЕРИИ К - ГЕНЕРАТОРЫ ОЗОНА С КОНЦЕНТРАТОРОМ КИСЛОРОДА
Кислородные озонаторы

КИСЛОРОДНЫЕ ОЗОНАТОРЫ СЕРИИ К

В установках очистки воды большой и средней производительности генераторы озона с концентратором кислорода имеют ряд очевидных преимуществ перед озонаторами, использующими воздух в качестве рабочего газа:

 - во-первых, концентрация озона в кислородных озонаторах в несколько раз больше, чем воздушных, что резко уменьшает потери озона при растворении, позволяет упростить системы ввода озона в воду, увеличивает надежность оборудования;

- во-вторых, преимущество генераторов озона с концентратором кислорода связано с их большей энергетической эффективностью, что существенно, особенно в установках с большой производительностью озона.

Разработка энергосберегающих кислородных озонаторов непосредственно связана с выбором используемого источника кислорода. Эта связь обусловлена прежде всего тем, что конструкция генератора озона должна быть согласована с качеством используемого кислорода и тем, что конечного потребителя оборудования интересует не энергопотребление отдельно взятого генератора озона, а энергопотребление всей системы в целом (оно может быть в разы больше). Сейчас в Европе широко распространены озонаторы, использующие кислород, испаренный из сжиженного (LOX). Такой подход, очевидно, наиболее энергетически эффективен, но требует инфраструктуры доставки и хранения жидкого кислорода и предъявляет жесткие требования к организации и безопасности этих процедур. В России и многих других странах гораздо более предпочтительным решением является автономное производство кислорода при помощи короткоциклового концентратора. Энергопотребление короткоциклового концентратора кислорода или осушителя воздуха, почти целиком определяемое энергозатратами компрессора, нагнетающего воздух в адсорберы, составляет существенную, а иногда, и большую часть общих энергозатрат на производство озона. Существуют и другие существенные непрямые затраты энергии, вносящие свой вклад в полное энергопортебление озонаторной установки. Это могут быть энергозатраты на дополнительную водоподготовку охлаждающей воды озонатора, ее дополнительное охлаждение и т.п.

Обработка воды газообразным озоном О3

Обработка воды газообразным озоном О3 является Перспективным современным направлением в водоподготовке.

Озон в силу своих высоких окислительных свойств способен эффективноуничтожать патогенную бактериальную микрофлору и окислять многие органические соединения и металлы с их последующим разложением. Озонирование воды перспективно в водоподготовке питьевой воды и воды, используемой для хозяйственных нужд, дезинфекции сточных вод, оборотной воды бассейнов, обеззараживании воды, предназначенной для бутилирования, удаляя из воды неприятные привкусы и запахи, а также для дезинфекции производственных и бытовых помещений и дезодорации воздуха. В данной статье рассмотрены основные аспекты применения озона в водоподготовке.

Очистка и получение пригодной для потребления питьевой воды является важным этапом водоподготовки. По традиционной схеме водоподготовка обычно включает три основных стадии: механическую фильтрацию, удаление из воды взвешенных и коллоидных веществ (осветление) и обеззараживание. Удаление из воды взвесей достигается при помощи сорбционных методов и фильтров. Для осветления воды применяется химическая обработка специальными коагулянтами (сернокислый алюминий Аl(SO4)3·18Н2О, сернокислое железо FeSO4·7Н2О, хлорное железо FeCl3·6H2O), способными осаждать коллоидные частицы гидроксидов железа или алюминия с адсорбированными на них коллоидами загрязнений, размером до 0,07 микрон. Для обеззараживания воды используется обработка хлором и его производными (окись хлора (ClO2), гипохлорид натрия NaOCl), содержащими 95-97 % активного хлора. Необходимость использования трёх различных процессов существено усложняет технологию обработки воды. Из-за значительной стоимости сорбционных установок и сложности технологического процесса водоподготовки часто приходится пренебрегать улучшением вкусовых качеств воды. При обработке воды коагулянтами в воду поступают дополнительные загрязнения; хлорирование, в свою очередь приводит к образованию в воде токсически опасных хлорорганических соединений.

Применение озона при хранении и перевозке скоропортящейся плодоовощной про­дукции.

Применение озона при хранении и перевозке скоропортящейся плодоовощной про­дукции.

Одним из важнейших направлений, в области хранения продуктов питания, является длительное хранение и перевозка свежих овощей, фруктов, ягод, которые в большинстве своём, относятся к категории скоропортящихся продуктов. Почти половина ово­щей и фруктов не доходят до конечного потребителя по причине ненадлежащих условий хранения и несовершенства системы продовольственной логистики. Поэтому на сегодняшний день особенно остро стал вопрос о разработке новых энергосберегающих и экологически безопасных технологических решений в области создания наиболее благопри­ятных условий хранения и транспортировки скоропортящейся плодоовощной и мясомо­лочной продукции, которые обеспечивают максимальную их сохранность. Одним из наиболее эффективных решений в этой области является применение озоновых техноло­гий. На сегодняшний день в мире накоплен значительный опыт применения озона для обработки фруктов и овощей с целью увеличения сроков их хранения. Озонирование резко уменьшает обсемененность плодоовощной продукции гнилостной и патогенной мик­рофлорой, а также резко снижает уровень протекающих метаболических процессов, т. е. устраняет основные причины порчи сельскохозяйственной и пищевой продукции, обеспечивая значительный экономический эффект.

Практическое применение озона как стерилизующего средства началось с очистки воздуха складских помещений. Данный способ заключался в насыщении воздуха определенным количеством озона, достаточным для уничтожения основных видов патогенных микроорганизмов. Проведённые многочисленные эксперименты показали, что при обработке складских помещений озоном дозой 2 - 35 мгОз/м3 в течение 60 - 240 минут обеспечивается полное их обеззараживание. Применение озона в качестве дезинфицирующего средства рекомендуется «Методическими рекомендациями по применению озона в качестве дезинфицирующего средства» (Минпищепром СССР, 1976 г.), инструкцией «Дезинфекция и дезодорация в холодильниках способом озонирования» (Министерство торговли СССР, 1973); «Временными методическими рекомендациями по применению озона для дезинфекции плодоовощехранилищ и хранения картофеля» (Украинский НИИ торговли и общественного питания, 1981 г.), а также рядом других нормативных документов.

Способность озона уничтожать различные микроорганизмы, в том числе гнилостные бактерии, плесень, споры грибов позволяет эффективно использовать его для увеличения срока хранения пищевой продукции в овоще- и зернохранилищах, холодильных камерах, рефрижераторах. Озон разрушает выделяемый овощами и фруктами этилен, который способствует ускорению созревания плодоовощной продукции и тем самым задерживает их созревание. Проведённые исследования показали, что продолжительность хранения плодоовощной продукции можно увеличить в среднем вдвое с одновременным сохранением тонкого аромата фруктов. Так при обработке ягод (клубника, малина, виноград) озоном дозой 3 - 8 мгОз/м3 срок их хранения увеличивается в 2 раза; после обработки озоном яблок дозой 4 - 9 мгОз/м3 их срок хранения при комнатной температуре увеличивается до 15 дней. После обработки яблок озоном дозой 4 - 6 мгОз/м3 срок хранения их при температуре +5°С увеличивается до 5 месяцев. Аналогичные результаты были получены при хранении обработанных озоном цитрусовых, бананов, томатов, картофеля, капусты и другой плодоовощной продукции [1]. Обработка озоном плодоовощной продукции увеличивает сроки её хранения 1,5 - 2 раза, обеспечивая сокращение потерь хранящейся продукции в 1,5 - 2,5 раза.

Таблица 1 - Рекомендуемые режимы озоновой обработки

плодоовощной продукции в режиме длительного хранения

(выписка из «Временных мето­дических рекомендаций по применению озона для дезин­фекции плодоовощехранилищ и хранения картофеля»).

 

Продукция

Концентра­ция озона, мгО3/м3

Время озонирования в сутки, ч, не менее

Количество обра­боток в неделю (справочно)

Капуста

7 - 13

4

1 - 2

Морковь

5 - 15

4

3 дня подряд

 1 - 2 раза в месяц

Чеснок

9 - 14

5

2 - 3

Лук

8 - 10

4 - 5

1-2 раза в сутки

Виноград

3 - 8

3

3 - 4

Салат

9 - 12

2

4 - 5

Яблоки

4 - 9

5

2 - 3

 

Особенно интересен опыт применения озона при хранении картофеля.

Так периодическая обработка хранящегося в картофелехранилище при температуре 6 - 14 °С и влажности 93 - 97% картофеля озоном дозой 2 - 7 мгОз/м3 позволила увеличить срок его хранения до 6 месяцев, при этом в хранящемся картофеле наблюдалось увеличение со­держания крахмала при одновременном снижении содержания сахаров. Озонирование картофеля значительно подавляет развитие фитопатогенной микрофлоры, так, например, количество находящихся на поверхности картофеля плесневых грибов после обработки картофелехранилища озоном снижается в 1,5 - 2 раза, а в воздушной среде картофеле­хранилища количество различных микроорганизмов снижается в 10 - 12 раз, что также положительно влияет на сохранность хранящегося картофеля. Потери картофеля при применении обработки овощехранилища озоном снижаются на 10 - 15% и более [2].

Благодаря своим дезинфицирующим способностям озон предотвращает формирование на стенах хранилища, деревянных ящиках и контейнерах различных колоний микроорганизмов, в том числе особенно устойчивой к низким температурам 0 ... +4°С и придающей хранящейся плодоовощной продукции специфический гнилостный запах голубой плесени. В связи с тем, что озон является достаточно сильным окислителем, его окислительный потенциал примерно на 20% выше, чем у хлора, он эффективно разрушает находящиеся в воздухе овощехранилищ и холодильных камер ароматические углеводороды, т. е. осуществляет процесс дезодорации помещений. Кроме того, являясь одной из неустойчивых разновидностей молекул кислорода, озон довольно быстро распадается и превращается в безопасный кислород, чем он выгодно отличается от традиционно применяемых для санитарной обработки плодоовощной продукции и овощехранилищ токсичных химикатов.

Большой интерес представляет применение озона для обработки перевозимой автомобильными и железнодорожными рефрижераторами плодоовощной продукции. Применение периодического озонирования перевозимой продукции позволяет на 10 - 15% снизить потери, возникающие в результате протекания гнилостных процессов при низких температурах и сократить потери от порчи перевозимой продукции. Кроме того, периодическое озонирование перевозимой и хранящейся продукции позволяет на несколько градусов повысить температуры её хранения и избежать утраты товарного качества продукции в результате её замораживания, а также уменьшить энергопотребление холодильных агрегатов.

Подводя итоги, можно сделать следующие выводы о целесообразности применения озона для обработки плодоовощной продукции:

  • озон обладает сильным дезинфицирующим эффектом и пагубно воздействует на гни­лостную и патогенную микрофлору. Озон эффективно разлагает образующиеся на по­верхности плодоовощной продукции токсины, являющиеся продуктами жизнедеятельности микроорганизмов;
  • при применении озоновой обработки хранящейся и перевозимой плодоовощной продукции происходит замедление процессов её созревания, и снижаются потери от протекающих процессов гниения плодов;
  • озон эффективно уничтожает неприятные специфические запахи гнили и осуществляет дезодорацию овощехранилищ и хранящейся плодоовощной продукции;
  • после обработки озоном, хранимой плодоовощной продукции, не обнаружено ухудшения их качества и потребительских свойств;
  • периодическая обработка овощехранилищ небольшими дозами озона отпугивает раз­личных грызунов и эффективно воздействует на насекомых, обеспечивая улучшение сохранности хранящейся плодоовощной продукции;
  • применение озона для обработки плодоовощной продукции, холодильных камер и овощехранилищ отличается простотой, эффективностью и экологической безопасностью вследствие отсутствия вредных побочных эффектов в результате быстрого разложения озона до кислорода;
  • стоимость обработки плодоовощной продукции с применением озона в несколько раз ниже, чем при использовании химических дезинфектантов, озон получают непосред­ственно на месте при помощи специальных приборов - озонаторов. Затраты электро­энергии для санитарной обработки хранящейся в холодильной камере объёмом 1000м3 плодоовощной продукции составляют 4 - 8 кВт-ч в неделю;
  • способность озона уничтожать гнилостную и патогенную микрофлору позволяет эф­фективно применять озон для увеличения срока хранения скоропортящейся плодоовощной продукции при её перевозке в холодильных камерах рефрижераторов;

Применение озоновых технологий при хранении и перевозке скоропортящейся плодоовощной продукции позволяет снизить потери скоропортящейся плодоовощной продукции, в значительной мере сохранить её биологическую ценность, уменьшить трудо- и энергозатраты; отказаться от применяемых для обработки продукции токсичных химических дезинфектантов. Для озоновой обработки плодоовощной продукции наиболее целесообразно применять озонаторы Vaneco. Принцип действия этих озонаторов основан на явлении фотолиза содержащегося в воздухе овощехранилищ, холодильных камер и рефрижераторов кислорода воздуха. В отличие от традиционных электроразрядных озонаторов, фотохимические озонаторы могут работать в условиях достаточно низких температур и высокой влажности воздуха. Эти озонаторы не содержат источника высокого напряжения, что значительно повышает их надёжность и безопасность. В зависимости от модификации они могут питаться от низковольтных электрических сетей постоянного тока напряжением 12 или 24В, а также от электрической сети переменного тока частотой 50/60 Гц напряжением 36 В, 110 В или 220 В, что позволяет применять их как в стационарных, так и в передвижных холодильных камерах и автомобильных и железнодорожных рефрижераторах. Компактность и надёжность фотохимических озонаторов позволяют применять их для обработки контейнеров с плодоовощной продукцией непосредственно в торговых залах продовольственных магазинов и супермаркетов, что позволяет значительно снизить потери от её гнилостной порчи и устранить специфические запахи.

Озонирование воды в УЗВ

ОЧИСТКА ОБОРОТНОЙ ВОДЫ В АКВАРИУМАХ И ПРУДАХ

Установка очистки оборотной воды в аквариумах для передержки рыбы должна обеспечивать следующие функции:

  • Очистку оборотной воды от взвешенных органических веществ
  • Очистку оборотной воды от растворенного аммиака
  • Очистку оборотной воды от растворенных органических соединений

Для решения этих задач нами был разработан ряд установок озоновой очистки оборотной воды в аквариумах.

 

Обрабатываемая вода проходит несколько стадий очистки:

  • Первичная фильтрация взвешенных частиц
  • Биологическая очистка воды от растворенного аммиака
  • Дезинфекция воды и окисление растворенных органических веществ озоном
  • Тонкая биологическая очистка воды от растворенной органики
  • Тонкая фильтрация растворенных взвешенных органических частиц, устранение продуктов озонолиза и остаточного озона

Объединение этих стадий очистки в компактной установке оказалось возможным благодаря использованию озона. Озон дезинфицирует воду, вступает реакцию с растворенными органическими веществами, резко повышая их биоусвояемость. Благодаря этому эффекту удалось значительно интенсифицировать процесс биоокисления растворенных органических соединений и многократно уменьшить габаритные размеры биофильтра. Кроме того, благодаря коагулирующему эффекту озонирования, значительно возрастет эффективность фильтрации взвешенных веществ, обеспечивающая идеальную прозрачность воды.

Установка работает в полностью автоматическом режиме, поддерживая идеальное качество воды и товарный вид рыбы. Уровень воды в аквариуме, контролируется автоматически, при этом, водопроводная вода, используемая для подлива, проходит предварительную очистку от хлора и хлорорганических соединений.

Вода, обогащённая озоном

Вода, обогащённая озоном, не только очищается от вредных соединений и микроорганизмов, но и приобретает дезинфицирующие и целебные свойства.

Озонированная вода в домашних условиях находит самое широкое применение. Ни одно химическое средство не может сравниться с озонированной водой по универсальности применения, безопасности и низкой цене.

Озон – (от древнегреческого ὄζω — пахнущий)  голубоватый газ состоящий из трёхатомных молекул кислорода.

В природе озон образуется из молекулярного (двухатомного) кислорода в результате действия ультрафиолетового спектра солнечного света, при разрядах молнии, а также в небольших количествах в водопадах в прибойной волне.

Воду, обогащенную озоном можно использовать для:

• дезинфекции и дезодорации (вместо химических моющих средств) детских игрушек, посуды, холодильника, стен и полов в ванной и туалетной комнатах, пр.;
• обработки пищевых продуктов - мяса, рыба, яйца, зелень, овощи, фрукты и др.;
• домашней косметологии и озонотерапии (устранение перхоти, угрей, полоскание горла, лечение дёсен, устранение грибковых заболеваний кожи, целлюлита и др.);
• ухода за домашними животными и рыбками;
• полива комнатных и садовых растений и обработка семян;
• отбеливания и придания цветности белью, устранения остатков порошка в тканях;

Озон не представляет опасности для здоровья, и безвреден для окружающей среды.

Уникальные свойства озонированной воды основываются на сильнейшей окислительной способности озона и  высокой растворимости в воде.

Озонированная вода уничтожает все возбудители болезней и  разрушает большинство химикатов.

При озонировании в воду не вносится ничего постороннего. Озон быстро распадается и обогащает воду кислородом улучшая вкусовые и лечебные свойства воды.

Содержание кислорода в воде увеличивается в 12 - 15 раз. При этом минеральный состав и pН остаются без изменений.

В холодной воде через 15-20 мин. озон распадается на половину, образуя гидроксильную группу и воду.

Эффективное бактерицидное действие озона в воде проявляется при концентрации 0,4 – 0,5 мг в газе на 1л обрабатываемой воды.

Озон разлагает органические и химические вещества, находящиеся в воде до простейших – воды, углекислого газа и осадка уже не активных веществ. Осадок легко снимается, отстаивается, или фильтруется.

Обработка воды избыточным количеством озона не влечет за собой негативных последствий. Газ быстро превращается в кислород, что только улучшает качество воды.

Озон по своим свойствам уничтожения бактерий и вирусов в 2,5-6 раз эффективнее ультрафиолетовых лучей и в 300-6000 раз эффективнее хлора. При этом в отличие от хлора озон уничтожает даже цисты глистов, вирусы герпеса и туберкулеза.

Современные методы дезинфекции

В настоящее время одним из современных методов дезинфекции является Озонирование.

 Разработаны Озонаторы с интегрированным генератором кислорода

Процесс озонирования чрезвычайно прост: в озонаторе, так же как и в природе во время грозы, под действием электрического разряда часть молекул кислорода О2 распадается на атомы, затем атомарный кислород соединяется с молекулярным и образуется озон О3.

Озон является сильнейшим окислителем, за счет чего разлагает многие токсические примеси в атмосфере до простых безопасных соединений, тем самым обеззараживая воздух, – именно благодаря этому после грозы воздух в атмосфере становится разряженным, свежим и чистым.

Озонатор представляет собой прибор, который так же, как и природная гроза, производит озон из воздуха, что, в свою очередь, позволяет использовать свойства этого газа для дезинфекции предприятий, складов, а также жилых помещений.

Озонаторы применяются в мясоперерабатывающей промышленности, животноводстве, плодовоовощехранении, птицеводстве, на складах, при транспортировке, в больницах, а также в других помещениях

В настоящее время, благодаря модификации габаритов озонатора, появилась возможность устанавливать из в составе приточно-вытяжной вентиляции или даже в качестве обычного настенного кондиционера. Такая установка является не только компактной и эстетической, но и дезинфицирующей для самой системы кондиционирования, в которой скапливается вредная для человека микрофлора.

Для каждой области деятельности подходит свой озонатор, который соответствует всем необходимым критериям для эффективной дезинфекции.


Назад Вперед
Наверх
Tel.:+7(925) 536-30-20  E-Mail: fish-agro@list.ru
 

Уважаемые посетители!
Мы рады приветствовать Вас на сайте
Fish-Agro -Технологии и оборудование,.
Рыборазведение в УЗВ

Бизнес УЗВ

Рыборазведение в УЗВ

Барабанные фильтры

Рыборазведение в УЗВ

Бассейны

Рыборазведение в УЗВ

Озонаторы

Рыборазведение в УЗВ

РМУ

Рыборазведение в УЗВ

Рецепты блюд

Рыборазведение в УЗВ