FISH-AGRO | Оборудование для разведения рыб
Технологии, проекты и оборудование для разведения рыбы в УЗВ. Рыбоводство и рыба разведение в Установках Замкнутого Водоснабжения! Тилапиа, Клариевый Сом, Осетр, Форель.

Про водообмен в УЗВ

Водообмен - совокупность физических процессов, приводящих к смене воды в водном объекте , замещению одних водных масс, находящихся в нем, другими водными массами (с иными свойствами), поступающими в него из сопредельных объектов.

Водообменом в установках замкнутого цикла (далее УЗВ) принято считать скорость прохождения полного цикла воды в системе жизнеобеспечения обитателей системы, т.е. за какой промежуток времени насос (помпа) произведет полную откачку воды из области содержания гидробионтов через систему фильтрации. То есть если суммарное количество воды в системе составляет 2000 литров (включая трубопроводы, систему фильтрации и непосредственно емкость содержания) а производительность насоса составляет 4000 литров в час, то принято принимать скорость такого водообмена равную двукратному обмену воды в час.
Скорость водообмена в УЗВ при расчетах стараются обеспечить в диапазоне от 1 до 4, связано это с гидрохимией воды и экономическими показателями. При скорости водообмена менее единицы, вредные элементы (аммоний, нитраты, нитриты и др.) имеют высокую скорость накопления в системе, что вызывает гибель обитателей УЗВ, при высоких значения величины водообмена в системе замкнутого цикла вода циркулирует в системе вызывая только негативные явления: течение, повышенный удельный расход электроэнергии и перемешивание взвешенных частиц. Расход электроэнергии и перемешивание взвешенных частиц не выпадающих в осадок сказываются на себестоимости продукции. Поэтому при проектировании и эксплуатации УЗВ стоит придерживаться правила разумной экономии.
Рассмотрим негативные явления, связанные с высоким течением воды в емкостях с гидробионтами. Высокая скорость протекания жидкости негативно отражается как в аквариуме с рыбками так, например и с крабами или лангустами в промышленных УЗВ. Повышенный поток заставляет обитателей сопротивляться потоку жидкости, а как следствие биохимические реакции в тканях ускоряются, что приводит к повышенному расходу энергии. При недостатке белкового корма происходит истощение и как следствие гибель обитателей. В системах промышленной передержки в течении длительного времени происходит уменьшение веса, но наиболее негативный фактор связан с ослабленностью гидробионтов, что приводит к сокращению времени выживания в неестественной для них среде.
Высокая величина водообмена в системе фильтрации также оказывает негативное влияние на протекание процессов очистки:  в механическом фильтре высокая скорость протекания жидкости снижает эффективность за счет турбулентности потока, взвешенные частицы перемешиваются и требуется фильтр механической очистки с меньшим по диаметру проходным сечением. В химическом фильтре сокращается время контакта очищающего субстрата с нежелательными элементами, в биологическом фильтре скорость потока жидкости наиболее важная величина она составляет 4 литра в секунду на 1 квадратный метр поверхности субстрата очистки. Выведенная в 1966 году японским исследователем К. Хироямой для гравийных аквариумных фильтров в которой в левой части неравенства окислительная способность фильтра (ОСФ) определяется мг  О2/мин;  в правой части выражается нагрузка на фильтр со стороны водных организмов,  мг О2/мин.  

Формула (К.Хироямы)  расчета мощности биологического фильтра

      где:  
Wi- площадь поверхности фильтра, м3;
Vi - скорость тока воды через фильтр, см/мин;
Gi - коэффициент размера гравия;
Di - толщина слоя гравия, см;
р - количество фильтров, обслуживающих аквариум;
В i - масса отдельного животного, г;
Fi - средняя масса пищи, потребляемая ежедневно одним животным, г;
g - число животных в аквариуме.
Gi - коэффициент размера гравия - определяется по формуле:

Формула расчета коэффициента гравия

где:
Rk - средний размер каждой фракции гравия, мм;
Хk - процентное соотношение массы каждой фракции.

При высоких скоростях омывания поверхности субстрата поток воды не позволяет закрепиться колонии бактерий, как следствие скудная колония бактерий на достаточно большой площади поверхности.
Низкая скорость водообмена еще более негативно сказывается на протекании жизнеобеспечивающих процессов: отсутствие движения потока непосредственно в области обитания гидробионтов приводит к образованию застойных зон, в которых накапливаются вредные элементы, в таких участках отсутствует растворенный кислород и концентрация аммония нитратов и нитритов превышает допустимую концентрацию,  невысокая скорость омывания поверхности субстрата приводит отсутствию питания для аэробных бактерий и как следствие минимальная популяция, снижение растворенного в воде кислорода, одновременно при дыхании рыб в воде растет содержание диоксида углерода, изменяя при этом водородный показатель (рН) воды в сторону кислотности.
В промышленных установках замкнутого водоснабжения для разведения рыб показатель водообмена рассчитывается индивидуально на основании заданных условий. Основная цель водообмена поддержание концентрации веществ, влияющих на жизнедеятельность рыбы,  в заданном диапазоне значений. Во время расчета УЗВ определяют предельные допустимые концентрации кислорода, аммонийного азота, углекислого газа, нитратов и нитритов, а также взвешенных веществ и оценивают рабочие параметры системы подготовки воды. Затем для всех предельных допустимых концентраций отдельно рассчитывают значение водообмена, которое позволит поддерживать предельную концентрацию. В итоге расчета выбирают предельно допустимое значение, относительно которого будут рассчитываться остальные параметры. Водообмен рассчитывают для каждого отдельного вещества на основании уравнения баланса масс, смысл которого сводится к равенству покидающих  бассейны веществ и сумму поступивших, произведенных и потребленных веществ за единицу времени. Расчет по кислороду при заданной минимальной концентрации  и подготовке воды в оксигенаторе  при содержании рыбы c выбранным максимальным удельным потреблением (для каждого вида рыб выбирается по справочнику) с использованием уравнения баланса масс будет выглядеть в формульном представлении следующим образом:

 О2’ * V – N * NO2   = О2 * V

где:
О2 – минимальная концентрация кислорода в воде, мг/л;
О2’ – концентрация кислорода в блоке водоподготовки (оксигенаторе) мг/л;
N – масса рыбы в системе жизнеобеспечения кг;
NО2 – максимальное удельное потребление кислорода г/час;
V – скорость водообмена л/час;


Выбирая по справочнику предельные концентрации по аммонийному азоту, определяем выбранные значения. Исходя из расчетов поверхности биофильтра, принимаем  значение эффективности работы  блока биологической очистки. Подставим данные в уравнения баланса масс которое примет вид:

NNOx” * V + NNOx‘ * N = NNOx * V

где:
NNOx – предельно-допустимая концентрация аммонийного азота в воде, мг/л;
NNOx’ – предельное значение выделение аммонийного азота рыбой г/ч;
N – масса рыбы в системе жизнеобеспечения кг;
V – скорость водообмена л/час;


NNOx”= W” * NNOx

где:
W” – эффективность работы биологического фильтра;
NNOx – предельно-допустимая концентрация аммонийного азота в воде, мг/л;
NNOx” – значение концентрации аммония в системе после биологического фильтра  г/час;


Проведя расчет по всем основным показателям выбираем определяющий минимальный расход воды в системе оборотного водоснабжения и проводим пересчет других показателей приводя к полученному значению минимального расхода воды.

Типичные ошибки начинающих рыбоводов

ТИПИЧНЫЕ ОШИБКИ КЛИЕНТОВ, СТРОЯЩИХ РЫБОВОДНОЕ ХОЗЯЙСТВО УЗВ:

  • Сразу большие мощности. Не имея опыта в рыбоводном бизнесе, многие клиенты «бросаются» на хозяйства больших мощностей, не освоив сперва азы ведения рыбоводного бизнеса.
  • Покупка оборудования у «гаражных» производителей. Сейчас практически каждый, кто купил себе минимальный комплект оборудования для сварки пластика, предлагает Вам оборудование, сделанное самому по бросовым ценам. Такие фирмы открываются-закрываются и перепрофилируются практически каждый день. Во-первых, нет гарантий, что такое оборудование проработает долго. Во -вторых, представьте, что оборудование сломалось (а оно рано или поздно сломается). Где Вы возьмете запчасти, когда хваленый «производитель» отойдет от дел через пару лет или просто перепрофилирует свою деятельность?
  • Постройка своими силами. Хозяйство УЗВ – это сложная технологическая система. Даже если Вы имеете большой опыт в рыбоводстве, не рассчитывайте, что построите успешно работающее и энергоэффективное УЗВ. Даже если Вы сделаете 999 технических моментов правильно и ошибетесь в одном, вся работа и огромное количество вложенных денег может «накрыться медным тазом». И все равно Вы потом придете к профессионалам, но уже потратив множество времени, денег и нервов впустую. Таких примеров десятки, если не сотни. Подумайте хорошо прежде чем наступать на чужие грабли.
  • Покупка оборудования у посредников. Порядка 80% предложений на рынке - посредники. А также посредники, покупающие у посредников. Наценка на такой товар - до 300%. Вы покупаете через "восемь рук" и переплачиваете многократно.
  • Наем подрядчика, который "не делал, но может". Такой подрядчик уж точно сорвет Вам сроки, ошибется неоднократно, купит маломощное (либо слишком мощное) оборудование, построит, переделает, снова построит. А Вы снова теряете свое время, деньги и нервы.
  • Плохо просчитанная экономика. Гарантия нестыковок по финансам, плохой рентабельности и разочарования.
  • Заказ проекта у зарубежной фирмы, не имеющей специалистов в России. Вы знаете английский и решили обратиться напрямую к хорошей европейской фирме? Отлично! Только помните, что они:
    - не знают местных особенностей рынка и никак не смогут Вам помочь при подготовке бизнес плана.
    - зачастую имеют лишь поверхностное понимание биологии рыб, а уж тем более исконно Российских рыб типа осетра
    - не помогут Вам в организационных вопросах и не помогут «прорваться» сквозь бюрократию
    - поставят Вам «круто нафаршированную систему», и Вы все равно переплатите…

Система оборотного водоснабжения (СОВ) для выращивания форели

Система оборотного водоснабжения (СОВ) для выращивания форели – среднетехнологичная рыбная ферма в которой применяется УЗВ с большой подменой свежей воды и которая расположена вне отапливаемого помещения, предназначенная для выращивания форели или других холодолюбивых видов.

Система оборотного водоснабжения (СОВ) для выращивания форели

Применение высокотехнологичного УЗВ для выращивания форели, аналогичного УЗВ для осетровых, оказывается невыгодным по следующим причинам:
- при более низких температурах, которые требуются для форели, снижается скорость биологической очистки, это означает, что требуется биофильтр большего размера, чем для осетровых при той же производительности
- форель может успешно, хотя и не так быстро как при оптимальных температурах, расти при температурах артезианской воды, которая имеется обычно в достаточном количестве. Для поддержания подобных температур не требуется высокотехнологичное УЗВ в отапливаемом помещении.

По этим причинам для выращивания форели целесообразно применять упрощённый вариант УЗВ – систему оборотного водоснабжения (СОВ). Наиболее рациональный вариант СОВ представляет собой бетонные сооружения, чаще всего прямоугольной формы, частично заглубленные в грунт, частично обвалованные грунтом. Сооружение делится внутренними перегородками на каналы для выращивания  рыбы, отделение механической, биологической очистки, подающие каналы. Циркуляция воды осуществляется безнасосным способом – при помощи воздушного эрлифта, который также и является основным источником обогащения воды растворённым кислородом.

Такая система постоянно подпитывается достаточно большим количеством свежей артезианской воды. Например, для СОВ на 100 т форели в год  требуется до 50 м3 воды в час. Артезианская вода не должна содержать общего железа более 0,5 мг/л, при большем содержании железа выращивание форели таким методом на артезианской воде невозможно. В некоторых случаях можно для подпитки системы использовать поверхностную (речную, озёрную) воду. Зимой артезианская вода служит для предотвращения замерзания системы, летом для предотвращения перегрева. В условиях умеренного климата чем выше исходная температура артезианской воды тем лучше.  В связи со значительно большей проточностью свежей воды через СОВ в сравнении с УЗВ, вода, вытекающая из СОВ, менее загрязнена и обычно может быть сброшена в открытые водоёмы.

Следует отметить, что часто такие системы строятся вообще без реальной биологической очистки, когда мощность биофильтра заведомо в несколько раз меньше необходимой и он работает больше как механических фильтр. В этом случае аммонийный азот, выделяемой рыбой просто «вымывается» из системы водой. Это несколько удешевляет систему и делает её ближе к простой прямоточной, но сильно замедляет рост рыбы (чем снижает производительность) особенно в летние месяцы, потому что не позволяет воде подогреваться под воздействием солнечного излучения.

В качестве механического фильтра может применяться керамзит или подобный материал с периодической регулярной промывкой, так и пластиковые тонкослойные отстойники. Очевидно, что последние эффективнее, но дороже. Дополнительно, сооружение СОВ может накрываться на зиму или на постоянно светостабилизированной полиэтиленовой плёнкой или листовым поликарбонатом, что позволяет зимой и в межсезонье сохранять более высокую температуру и тем ускорить рост рыбы и увеличить производительность. Укрывать имеет смысл только системы с полноценным биофильтром. В таких системах возможно и применение кислорода с механическими оксигенаторами, устанавливаемыми в общий подающий канал после эрлифта, работающие только в летние самые тёплые месяцы. В хорошо оснащённых, особенно укрытых системах, летом поддерживается температура 14-16 град. С, зимой не ниже 5 град. С, что обеспечивает значительное ускорения роста рыбы по сравнению с выращиванием в открытых водоёмах в садках.

Обычно в СОВ по выращиванию товарной форели сажается молодь штучной навеской начиная с 25 – 30 г. Такую молодь можно покупать и привозить с других ферм. Также для получения такой молоди иногда рядом строят дополнительную маленькую СОВ, но лучше использовать полноценный мальковый цех с УЗВ.

УЗВ для выращивания осетровых

УЗВ для выращивания осетровых – высокотехнологичная рыбная ферма с установкой замкнутого водоснабжения, предназначенная для выращивания товарной рыбы отряда осетрообразных и их гибридов или получения товарной чёрной икры.

УЗВ для выращивания осетровых

Несмотря на существование большого количества проектов и разновидностей УЗВ для выращивания осетровых, все они не очень сильно отличаются друг от друга. Основные отличия состоят в конструкции и числе рыбоводных бассейнов, тогда как система очистки воды во всех случаях сводится к схеме: рыбоводные бассейны – механическая очистка – биологическая очистка – регулирование температуры – насыщение растворенным кислородом – обеззараживание – рыбоводные бассейны. Иногда какие-то этапы могут отсутствовать, совмещаться или меняться местами. Размещаются такие установки для условий нашего климата в хорошо утеплённом отапливаемом здании. Плотность посадки осетровых может достигать 60 кг/м2 (при глубине 1 м 60 кг/м3). Производительность превышает 120 кг/м2.

Опыт создания подобных систем говорит о том, что главными являются следующие  факторы:
- обеспечение рыбы растворенным в воде кислородом с учётом того, что кислород не может быть весь использован рыбой, как правило, концентрация кислорода в бассейнах близка к его концентрации на выходе бассейнов;
- конструкция бассейнов должна обеспечивать вынос из них взвесей и осадков, кроме того бассейны должна просматриваться до дна, чтобы видеть поедаемость корма и погибших или очень ослабленных рыб;
- биофильтр должен быть нормально обслуживаемым и иметь несколько избыточную по отношению к расчётной площадь полезной поверхности, поток воды через него должен быть достаточно равномерен без застойных безкислородных участков.  Насадка не должна быть  слишком мелкопористой.
- должно быть обеспечено как можно более равномерное поступление молоди в
систему и как можно более равномерное извлечение (и, соответственно, сбыт) готовой   
продукции из системы.
- ключевое оборудование жизнеобеспечения рыбы должно быть продублировано. 

Осетроводная ферма с УЗВ может быть автоматизирована, что уменьшит как  количество ручного труда, так и уменьшит зависимость от добросовестности работников. Однако, опыт говорит о том, что живую рыбу в любом случае оставлять надолго без присмотра нельзя и заменить рыбовода компьютером невозможно.

Мы считаем, что осетровая ферма с УЗВ может быть рентабельна начиная с производительности 25 тонн в год, при условии, что обслуживать её будут 1-2 человека, живущие непосредственно рядом с ней до производительности 100 – 120 тонн в год при условии, что её будут обслуживать 5-6 наёмных работников (не считая сбытовиков). При производительности выше 60 т/год ферма должна состоять из двух независимых модулей УЗВ, в один из которых входит мальковый цех и подращивание молоди, а во втором уже осуществляется доращивание рыбы до товара. Каждый модуль имеет независимую систему водообеспечения, свои собственное вспомогательное оборудование и т.п. и позволяет держать температуру воды, отличную от температуры в соседнем модуле.

Для осетровой фермы с УЗВ используется, как правило, высокопроизводительное энергосберегающее импортное и отечественное оборудование и оборудование собственного производства, коррозионо-стойкие трубопроводы и т.п. Экономия на оборудовании часто в будущем приводит к большим потерям дорогой живорыбной продукции.

Также должен быть предусмотрен резервный источник электропитания.
Для подпитки свежей водой УЗВ-осетровника, например, на 100 т/год достаточно артезианской скважины производительностью до 10-12 м3 воды в час, меньшего, соответственно,  меньше. Источник воды желательно также резервировать, например, имея собственную скважину иметь ещё и доступ к местному водопроводу на случай выхода из строя глубинного насоса. Необходимо также предусматривать куда сбрасывать отработанную воду с осадками, как правило, она содержит биогенные элементы (азот и фосфор) в количествах, вызывающих «цветение» водоёмов и сбрасывать её в них нельзя, только если через биопруд достаточной площади.

 

Производство товарной чёрной икры, используя только УЗВ, вполне возможно, но является делом сомнительной рентабельности. Существуют фермы, которые помимо больших УЗВ и бассейнов имеют отдельные установки замкнутого водоснабжения с охладителями воды (чилерами), которые позволяют получать икру круглый год за счёт охлаждения-нагревания производителей. Чаще всего такие отдельные УЗВ с охлаждением небольшие и создание их не представляет особых трудностей. Однако, это выгодно, как правило, если речь идёт о получение небольших количеств икры с целью размножения, но не промышленном производстве товарной икры. Также выращивание производителей в УЗВ представляется затруднительным, поскольку рост производителей приходится, как правило, целенаправленно замедлять. В противном случае вырастают производители большой массы тела, но у них развивается ожирение, которое замедляет, а то и вовсе приостанавливает половое созревание. Представляется более выгодным выращивание в УЗВ  осетровых до какого-то веса, несколько большего чем обычный товарный, например, 3 кг для ленско-русского гибрида, далее с помощью УЗИ-сканирования из них отбирать лучших самок для содержания в дальнейшем вне УЗВ, например, на тёплых водах ГРЭС или на естественных температурах на юге в более тёплом климате.  

Нитрифицирующие бактерии в биофильтре

Нитрифицирующие бактерии

В 1870 году Шлезинг и Мюнц (Schloesing, Muntz) доказали, что нитрификация имеет биологическую природу. Для этого они добавляли к сточным водам хлороформ. В результате окисление аммиака прекращалось. Однако специфические микроорганизмы, вызывающие этот процесс, были выделены лишь Виноградским. Им же было показано, что хемоавтотрофные нитрификаторы могут быть подразделены на бактерий, осуществляющих первую фазу этого процесса, а именно окисление аммония до азотистой кислоты (NH4+ —> NO2-), и бактерий второй фазы нитрификации, переводящих азотистую кислоту в азотную (NO2- —> NO3-). И те и другие микроорганизмы являются грамотрицательными. Их относят к семейству Nitrobacteriaceae.

Бактерии первой фазы нитрификации представлены четырьмя родами: Nitrosomonas, Nitrosocystis, Nitrosolobus и Nitrosospira. Из них наиболее изучен вид Nitrosomonas euroраеа, хотя получение чистых культур этих микроорганизмов, как и других нитрифицирующих хемоавтотрофов, до сих пор остается достаточно сложным. Клетки  N.europaea обычно овальные (0,6-1,0 ? 0,9-2,0 мкм, размножаются бинарным делением. В процессе развития культур в жидкой среде наблюдаются подвижные формы, имеющие один или несколько жгутиков, и неподвижные зооглеи.

У Nitrosocystis oceanus клетки округлые, диаметром 1,8-2,2 мкм, но бывают и крупнее (до 10 мкм). Способны к движению благодаря наличию одного жгутика или пучка жгутиков. Образуют зооглеи и цисты.

Размеры Nitrosolobus multiformis составляют 1,0-1,5 ? 1,0-2,5 мкм. Форма этих бактерий не совсем правильная, так как клетки разделены на отсеки, дольки (-lobus, отсюда и название Nitrosolobus), которые образуются в результате разрастания внутрь цитоплазматической мембраны.

У Nitrosospira briensis клетки палочковидные и извитые (0,8-1,0 ? 1,5-2,5 мкм, имеют от одного до шести жгутиков.

Среди бактерий второй фазы нитрификации различают три рода: Nitrobacter, Nitrospina и Nitrococcus.

Большая часть исследований проведена с разными штаммами Nitrobacter, многие из которых могут быть отнесены к Nitrobacter winogradskyi, хотя описаны и другие виды. Бактерии имеют преимущественно грушевидную форму клеток. Как показано Г. А. Заварзиным, размножение Nitrobacter происходит путем почкования, причем дочерняя клетка бывает обычно подвижна, так как снабжена одним латерально расположенным жгутиком. Отмечают также сходство Nitrobacter с почкующимися бактериями рода Hyphomicrobium по составу жирных кислот, входящих в липиды.

Данные относительно таких нитрифицирующих бактерий, как Nitrospina gracilis и Nitrococcus mobilis, пока весьма ограниченны. По имеющимся описаниям, клетки N. gracilis палочковидные (0,3-0,4 ? 2,7-6,5 мкм, но обнаружены и сферические формы. Бактерии неподвижны. Напротив, N. mobilis обладает подвижностью. Клетки его округлые, диаметром около 1,5 мкм, с одним-двумя жгутиками.

По строению клеток исследованные нитрифицирующие бактерии похожи, на другие грамотрицательные микроорганизмы. У некоторых видов обнаружены развитые системы внутренних мембран, которые образуют стопку в центре клетки (Nitrosocystis oceanus), или располагаются по периферии параллельно цитоплазматической мембране (Nitrosomonas europaea), или образуют чашеподобную структуру из нескольких слоев (Nitrobacter winogradskyi). Видимо, с этими образованиями связаны ферменты, участвующие в окислении нитрификаторами специфических субстратов.

Нитрифицирующие бактерии растут на простых минеральных средах, содержащих окисляемый субстрат в виде аммония или нитритов и углекислоту. Источником азота в конструктивных процессах могут быть, кроме аммония, гидроксиламин и нитриты.

Показано также, что Nitrobacter и Nitrosomonas europaea восстанавливают нитриты с образованием аммония.

Такой микроорганизм, как Nitrosocystis oceanus, выделенный из Атлантического океана, относится к облигатным галофилам и растет на среде, содержащей морскую воду. Область значений рН, при которой наблюдается рост разных видов и штаммов нитрифицирующих бактерий, приходится на 6,0-8,6, а оптимальное значение рН чаще всего 7,0-7,5. Среди Nitrosomonas europaea известны штаммы, имеющие температурный оптимум при 26 или около 40° C, и штаммы, довольно быстро растущие при 4° C.

Все известные нитрифицирующие бактерии являются облигатными аэробами. Кислород необходим им как для окисления аммония в азотистую кислоту:

NH4+ + 3/2O2 —> NO2- + H2O + 2H+, ?F = -27,6?104 дж,

так и для окисления азотистой кислоты в азотную:

NO2- + 1/2O2 —> NO3-, ?F = -7,6?104 дж

Но весь процесс превращения аммония в нитраты происходит в несколько этапов с образованием соединений, где азот имеет разную степень окисленности.

Первым продуктом окисления аммония является гидроксиламин, который, возможно, образуется в результате непосредственного включения в NH+4 молекулярного кислорода:

NH4+ + 1/2O2 —> NH2OH + H+, ?F = +15,9?103 дж.

Однако окончательно механизм окисления аммония до гидроксиламина не выяснен. Превращение гидроксиламина в нитрит:

NH2OH + O2 —> NO2- + H2O + H+, ?F = -28,9?104 дж,

как предполагают, идет через образование гипонитрита NOH, а также окись азота (NO). Что касается закиси азота (N2O), обнаруживаемой при окислении Nitrosomonas europaea аммония и гидроксиламина, то большинство исследователей считает ее побочным продуктом, образующимся в основном в результате восстановления нитрита.

Пути окисления аммония и нитрита нитрифицирующими бактериями
Рис. 1. Пути окисления аммония и нитрита нитрифицирующими бактериями.

Исследование окисления Nitrobacter нитрита с использованием в опытах тяжелого изотопа кислорода (18O) показало, что образующиеся нитраты содержат значительно больше 18O, когда меченой является вода, а не молекулярный кислород. Поэтому предполагают, что сначала происходит образование комплекса NO2-H2O, который далее окисляется до NO3-. При этом происходит передача электронов через промежуточные акцепторы на кислород. Весь процесс нитрификации можно представить в виде следующей схемы (рис. 1), отдельные этапы которой требуют, однако, уточнения.

Кроме первой реакции, а именно образования из аммония гидроксиламина, последующие стадии обеспечивают организмы энергией в виде аденозинтрифосфата (АТФ). Синтез АТФ сопряжен с функционированием окислительно-восстановительных систем, передающих электроны на кислород, подобно тому как это имеет место у гетеротрофных аэробных организмов. Но поскольку окисляемые нитрификаторами субстраты имеют высокие окислительно-восстановительные потенциалы, они не могут взаимодействовать с никотинамидадениндинуклеотидами (НАД или НАДФ, Е01= -0,320 В), как это бывает при окислении большинства органических соединений. Так, передача электронов в дыхательную цепь от гидроксиламина, видимо, происходит на уровне флавина:

NH2OH —> флавопротеид —> цит. b (убихинон?) —> цит. c —> цит. a —> O2

Когда окисляется нитрит, то включение его электронов в цепь, вероятно, идет на уровне либо цитохрома типа с, либо цитохрома типа a. В связи с этой особенностью большое значение у нитрифицирующих бактерий имеет так называемый обратный, или обращенный, транспорт электронов, идущий с затратой энергии части АТФ или трансмембранного потенциала, образуемых при передаче электронов на кислород (рис. 2).

Цепь переноса электрона при окислении нитрита у Nitrobacter winogradskyi
Рис 2. Цепь переноса электрона при окислении нитрита у Nitrobacter winogradskyi.

Таким образом происходит обеспечение хемоавтотрофных нитрифицирующих бактерий не только АТФ, но и НАДН, необходимых для усвоения углекислоты и для других конструктивных процессов.

Согласно расчетам эффективность использования свободной энергии Nitrobacter может составлять 6,0-50,0%, a Nitrosomonas — и больше.

Ассимиляция углекислоты происходит в основном в результате функционирования пентозофосфатного восстановительного цикла углерода, иначе называемого циклом Кальвина. Итог его выражают следующим уравнением:

6CO2 + 18АТФ + 12НАДH + 12Н+ —> 6[CH2O] + 18АДФ + 18ФH + 12НАД + 6H2O,

где [CH2O] означает образующиеся органические вещества, имеющие уровень восстановленности углеродов. Однако в действительности в результате ассимиляции углекислоты через цикл Кальвина и другие реакции, прежде всего путем карбоксилирования фосфоенолпирувата, образуются не только углеводы, но и все другие компоненты клеток — белки, нуклеиновые кислоты, липиды и т. д. Показано также, что Nitrococcus mobilis и Nitrobacter winogradskyi могут образовывать в качестве запасных продуктов поли-?-оксибутират и гликогеноподобный полисахарид. Такое же соединение обнаружено в клетках Nitrosolobus multiformis. Кроме углеродсодержащих запасных веществ, нитрифицирующие бактерии способны накапливать полифосфаты, входящие в состав метахроматиновых гранул.

Еще в первых работах с нитрификатором Виноградский отметил, что для их роста неблагоприятно присутствие в среде органических веществ, таких, как пептон, глюкоза, мочевина, глицерин и др. Отрицательное действие органических веществ на хемоавтотрофные нитрифицирующие бактерии неоднократно отмечалось и в дальнейшем. Сложилось даже мнение, что эти микроорганизмы вообще не способны использовать экзогенные органические соединения. Поэтому их стали называть «облигатными автотрофами». Однако в последнее время показано, что использовать некоторые органические соединения эти бактерии способны, но возможности их ограничены. Так, отмечено стимулирующее действие на рост Nitrobacter в присутствии нитрита дрожжевого автолизата, пиридоксина, глутамата и серина, если они в низкой концентрации вносятся в среду. Показано также включение в белки и другие компоненты клеток Nitrobacter 14C из пирувата, ?-кетоглутарата, глутамата и аспартата. Известно, кроме того, что Nitrobacter медленно, но окисляет формиат. Включение 14C из ацетата, пирувата, сукцината и некоторых аминокислот, преимущественно в белковую фракцию, обнаружено при добавлении этих субстратов к суспензиям клеток Nitrosomonas europaea. Ограниченная ассимиляция глюкозы, пирувата, глутамата и аланина установлена для Nitrosocystis oceanus. Есть данные об использовании 14C-ацетата Nitrosolobus multiformis.

Недавно установлено также, что некоторые штаммы Nitrobacter растут на среде с ацетатом и дрожжевым автолизатом не только в присутствии, но и в отсутствие нитрита, хотя и медленно. При наличии нитрита окисление ацетата подавляется, но включение его углерода в разные аминокислоты, белок и другие компоненты клеток увеличивается. Имеются, наконец, данные, что возможен рост Nitrosomonas и Nitrobacter на среде с глюкозой в диализируемых условиях, которые обеспечивают удаление продуктов ее метаболизма, оказывающих ингибиторное действие на данные микроорганизмы. На основании этого делается вывод о способности нитрифицирующих бактерий переключаться на гетеротрофный образ жизни. Однако для окончательных выводов необходимо большее число экспериментов. Важно прежде всего выяснить, как долго нитрифицирующие бактерии могут расти в гетеротрофных условиях при отсутствии специфических окисляемых субстратов.

Хемоавтотрофные нитрифицирующие бактерии имеют широкое распространение в природе и встречаются как в почве, так и в разных водоемах. Осуществляемые ими процессы могут происходить весьма в крупных масштабах и имеют существенное значение в круговороте азота в природе. Раньше считали, что деятельность нитрификаторов всегда способствует плодородию почвы, поскольку они переводят аммоний в нитраты, которые легко усваиваются растениями, а также повышают растворимость некоторых минералов. Сейчас, однако, взгляды на значение нитрификации несколько изменились. Во-первых, показано, что растения усваивают аммонийный азот и ионы аммония лучше удерживаются в почве, чем нитраты. Во-вторых, образование нитратов иногда приводит к нежелательному подкислению среды. В-третьих, нитраты могут восстанавливаться в результате денитрификации до N2, что приводит к обеднению почвы азотом.

Следует также отметить, что наряду с нитрифицирующими хемоавтотрофными бактериями известны гетеротрофные микроорганизмы, способные вести близкие процессы. К гетеротрофным нитрификаторам относятся некоторые грибы из рода Fusarium и бактерии таких родов, как Alcaligenes, Corynebacterium, Achromobacter, Pseudomonas, Arthrobacter, Nocardia.

Показано, что Arthrobacter sp. окисляет в присутствии органических субстратов аммоний с образованием гидроксиламина и далее нитритов и нитратов. Кроме того, может образовываться гидроксамовая кислота. У ряда бактерий выявлена способность осуществлять нитрификацию органических азотсодержащих соединений: амидов, аминов, оксимов, гидроксаматов, нитросоединений и др. Пути их превращения представляют следующим образом:

R—NH2 —> R—NHOH —> R—[NO] —> R—NO2 —> NO3-, NO2-

Размеры гетеротрофной нитрификации в некоторых случаях бывают довольно большие. Кроме того, при этом образуются некоторые продукты, обладающие токсичным, канцерогенным, мутагенным действием и соединения с химиотерапевтическим эффектом. Поэтому исследованию данного процесса и выяснению его значения для гетеротрофных микроорганизмов сейчас уделяют значительное внимание.



*Жизнь растений в шести томах Жизнь растений. - М.: Просвещение, 1980 гл.редактор академик А.Л.Тахтаджян

Установки замкнутого водоснабжения для выращивания рыбы (УЗВ)

Установки замкнутого водоснабжения для выращивания рыбы (УЗВ)

   Выращивание гидробионтов в установках замкнутого водоснабжения (УЗВ) является технологией для выращивания рыб или других водных организмов с повторным использованием воды для нужд производства. Данная технология основывается на использовании биологических и механических фильтров и, в сущности, может использоваться для выращивания любых объектов аквакультуры: рыб, моллюсков, креветок, раков, лангустов и т.д
   Основной задачей УЗВ является искусственное создание среды обитания гидробионтов, обеспечивающей максимальный выход товарной продукции в сокращённые сроки при сохранении качества товара. Кроме того, к такого вида установкам предъявляются требования эффективного использования водных ресурсов - минимальная подпитка, использование оборотной воды.
    
    Традиционные методы выращивания гидробионтов зависят от множества факторов, таких как: температура воды в реке или море, погодные условия, чистота воды, уровня кислорода и т.д. В УЗВ эти факторы исключаются полностью или частично в зависимости от конструкции и скорости рециркуляции воды. Рециркуляция позволяет полностью контролировать все необходимые нормы воды. Слежение за такими параметрами как: концентрация растворенного кислорода, прозрачность воды, температура воды и даже освещенность происходит с помощью автоматических датчиков что гарантирует меньший стресс для рыбы и лучшие темпы роста. Что дает возможность прогнозировать к какому моменту рыба достигнет товарной массы. Также к плюсам УЗВ стоит отнести изолированность от внешних возбудителей различных заболеваний и возможность постоянно проводить профилактические мероприятия.
 
 Принцип действия УЗВ. УЗВ — это установка замкнутого водоснабжения для выращивания рыбы. Аквакультура находятся в бассейнах с высокой плотностью посадки. Подпитка в сутки свежей водой составляет не менее 5% от объема воды в установке. Это достигается путем применения системы механических и биологических фильтров для очистки отработанной воды для ее дальнейшего использования. Вся установка делается компактной и поэтому ее можно разместить в отапливаемом помещении, что делает УЗВ независимой от внешних условий среды. Рециркуляция воды обеспечивает более высокое и стабильное производство продукции аквакультуры с меньшим риском возникновения болезней, а также лучшие возможности для контроля параметров, влияющих на рост, в инкубационных цехах. Технология рециркуляции воды также подразумевает, что более нет необходимости в размещении рыбоводных заводов в нетронутых районах возле рек. Теперь они могут строиться почти в любом месте, где имеется – намного меньший, чем прежде – источник чистой, не содержащей патогенов воды.
    Для того чтобы удалить отходы жизнедеятельности гидробионтов из воды, ее необходимо постоянно очищать. Для этого вода из бассейнов по каналу подается на механическую фильтрацию, где из нее изымаются органические взвеси. Следующим этапом вода поступает в биологический фильтр, где вредные для рыбы органические соединения преобразуются в нетоксичные продукты. Потом вода обеззараживается, обогащается кислородом и опять подается в бассейны. Это основной принцип работы УЗВ.
    Рециркуляция в системе УЗВ может происходить с разной интенсивностью. Для правильно сконструированной установки, находящейся в обособленном, отапливаемом помещении достаточно 200 литров свежей воды на килограмм выращенной рыбы. Для переоборудованных в узв традиционных хозяйств под открытым небом будет достаточно 3 м3 воды на килограмм. А обычные проточные системы используют порядка 30 м3 воды на килограмм произведенной рыбы. С экономической точки зрения меньшее количество потребляемой воды бесспорно выгодней. Также легче происходит процесс очистки отработанной воды, потому что ее объем в разы меньше. Узв можно считать самой экологической технологией среди остальных.
    Круглогодичное выращивание гидробионтов в закрытых аквакультурных фермах исключает режимы зимовки, тем самым интенсифицируется процесс роста. Чем качественней технология, тем тем лучше среда обитания и, как следствие, выше темпы роста рыбы. Кроме того, качественно очищенная воды позволяет повысить плотности посадки рыбы и более эффективно использовать производственные площади.

Преимущества технологии Установок Замкнутого Водоснабжения (УЗВ):

•    выращивание различных видов рыб вне зависимости от природных условий;
•   полная управляемость режимами выращивания рыбы: температурным, гидрохимическим (кислородным, pH), кормовым; ускоренные темпы роста рыб и повышение эффективности выращивания;
•   экономия в расходовании воды;
•  рациональное использование водных, земельных и людских ресурсов;
•  упрощение утилизации продуктов жизнедеятельности рыб;
•  проведение комплекса мероприятий по лечению и изоляции зараженных особей значительно легче, чем в открытых водоемах.

     С чего начать производство рыбы на собственной ферме?  Начинать, конечно, следует с анализа воды (в скважине, в водопроводе или в реке) в том месте, где будет расположена УЗВ. Следующим шагом необходимо определиться с желаемым количеством выращиваемой рыбы, от этого будет зависеть габариты устройства УЗВ и его возможности. Также от количества производимой в одной УЗВ рыбы зависит рентабельновсть Вашего бизнеса и его окупаемость.

Комплектные поставки УЗВ. Сертификаты соответствия для грандополучателей

Комплектные поставки УЗВ в современных условиях. Карантин вносит свои коррективы...

Создание оптимальных условий для жизнедеятельности прибыльных промысловых аквакультур

Поддерживая постоянную циркуляцию воды, фирменные комплексы УЗВ от компании «Фиш-Агро» обеспечивают условия для нормальной жизнедеятельности рыбы, размещенной в изолированных резервуарах, бассейнах и емкостях. Осуществляя поставки оборудования по всей территории России, производитель помогает начинающим предпринимателям и крупным фермерам в регионах повысить прибыльность рыбоводного бизнеса, выйти на запланированный уровень производительности.

УЗВ фермы от проектирования до запуска

Товарное выращивание рыбы – одно из новых направлений предпринимательства, залогом успешности которого является тщательный подход к выбору поставщика оборудования. Контракт с «Фиш-Агро» освободит бизнесменов и инвесторов от хлопот, связанных с подбором и монтажом ферм. Компания изготавливает комплексы УЗВ под ключ, принимая в учет рекомендации квалифицированных сотрудников с экспертным уровнем знаний.

схема узв

Процесс создания оборудования подразумевает тщательный выбор комплектующих. С учетом специфики рыбоводного хозяйства специалисты составляют проектную документацию, а затем подбирают основные узлы:

  • датчики контроля;
  • трубопроводы, фитинги, запорную и регулирующую арматуру;
  • насосы;
  • технологическое оборудование;
  • фильтры;
  • автоматику;
  • модули сброса и набора воды;
  • прочие механизмы и машины;
  • оксигенаторы для поддержания заданной концентрации кислорода в бассейнах.

Далее оборудование монтируют и вводят в эксплуатацию.

Купить системы для выращивания рыбы с доставкой

Грамотный подход к расчету технологических проектов – залог наличия следующих преимуществ у представленных в продаже рыбных ферм:

Рациональное потребление ресурсов

Реализована функция потребления оборотной воды и минимальной подпитки, что позволяет в бережливом режиме потреблять водные ресурсы. Также экономно расходуется электричество.

Простота запуска

Монтаж осуществляется в сжатые временные сроки, предполагает минимальные затраты труда. При необходимости помощь в установке предоставят бригады профессиональных мастеров.

Непрерывный мониторинг

Рыбовод сможет отслеживать параметры работы установки, при необходимости внося коррективы в настройки.

В каталоге производственной компании «Фиш-Агро» посетители сайта найдут и другие сопутствующие аксессуары для разведения аквакультур. Товары собраны в заводских условиях под строгим контролем со стороны технологов. Они соответствуют стандартам качества и безопасности, имеют достойные эксплуатационные свойства, характеризуются долговечностью и надежностью.

Новый принцип подбора оборудования для рыборазведения в УЗВ

Предлагаю Вашему вниманию новый принцип самостоятельного подбора оборудования для выращивания рыбы в установках замкнутого водообращения для начинающих рыбоводов в минимальном объеме выхода продукции -Домашние установки, мини УЗВ, фермерские УЗВ, фермерские системы для рыборазведения. Большинство начинающих просят дать стоимость на самую маленькую установку, так как не знают как пойдет процесс выращивания в целом и может быть они решат поменять вид выращиваемой рыбы в зависимости от потребностей рынка. Компании, работающие в этой области, предлагают различные установки на тот или иной вид рыбы исходя из объема выращиваемого вида. При этом клиент до последнего момента остается не уверен в правильности сделанного выбора.

Мы думали и поступали также, но я решил упростить задачу и дать возможность начинающему фермеру сделать выбор, основываясь на начальном этапе только на свои финансовые возможности. Сколько при этом получится вырастить рыбы Вы сможете сделать выводы, основываясь на рекомендации к этой установке.

Ошибки Кулибина

ТИПИЧНЫЕ ОШИБКИ ЛЮДЕЙ, СТРОЯЩИХ УЗВ СВОИМИ РУКАМИ:

  • Набираемся информации в книгах и на рыбоводных форумах и начинаем строить. Опускаем сейчас вопрос достоверности и применимости той информации, которую Вы «по порциям» собираете в книгах и интернете. Представим себе, что из 50 вещей Вы сделали 49 правильно. Но, допустили одну небольшую ошибку. К примеру, поставили теплообменник после оксигенатора, а не до него в цепочке. Знаете, что произойдет? Все Ваши усилия будут напрасны, так как рыба просто погибнет из-за ГПЗ. Или, к примеру, решите применить дешевый керамзитовый фильтр и купите новый керамзит с завода. Результат тот же самый. Поймите, Вы строите сложную технологическую систему с живыми организмами. В теории все просто, но на практике обязательно допустите критическую ошибку.
  • Смотрим на деревья, но не видим картину леса. Вы можете «закладывать» хорошие работающие узлы. Но УЗВ – это система с замкнутым контуром, в которой все узлы взаимосвязаны и каждый из них зависит от предыдущего и влияет на последующий. Представим, что Вы запустили УЗВ и оно работает. Но если Вы не строили его ранее, то велика вероятность, что система будет либо некорректно работать, либо неэкономично. И все равно Вам придется ее переделывать. А это время, нервы и деньги.
  • Придумывание велосипеда.Не зря только самые эффективные технологии живут на рынке. Эра штеллерматиков закончилась.
    Представим, что Вам подсказали, что есть крутой и дешевый механический фильтр, выполненный из алюминиевых банок и помидоров. И Вы с радостью схватились за него и решили запроектировать. А теперь реальность – все равно вам придется потом купить барабанный фильтр (или с плавающей загрузкой), так как это практически единственные реально жизнеспособные и проверенные системы на сегодняшний день.
  • Покупка оборудования у «гаражных» производителей. Сейчас практически каждый, кто купил себе минимальный комплект оборудования для сварки пластика, предлагает Вам оборудование, сделанное самим по бросовым ценам. Такие фирмы открываются-закрываются и перепрофилируются практически каждый день. Во-первых, нет гарантий, что такое оборудование проработает долго. Во вторых, представьте, что оборудование сломалось (а оно рано или поздно сломается). Где Вы возьмете запчасти, когда хваленый «производитель» отойдет от дел через пару лет или просто перепрофилирует свою деятельность?
  • Покупка оборудования у посредников. Порядка 80% предложений на рынке - посредники. А также посредники, покупающие у посредников. Наценка на такой товар - до 300%. Вы покупаете через "восемь рук" и переплачиваете многократно.
  • Траты на катание по хозяйствам и консультации «специалистов». Очевидно, Вы уже не раз задумывались над тем, чтобы поехать посмотреть какое-нибудь УЗВ и думаете, что это поможет Вам построить свое. Вы готовы потратить неплохую сумму денег (экскурсии и консультации, как правило, далеко не бесплатные). Все специалисты и консультанты готовы на теории построить Вам хоть космический корабль. В реальности приехать на хозяйство и помочь – едва ли кто.

Уважаемые посетители!
Мы рады приветствовать Вас на сайте
Fish-Agro -Технологии и оборудование,.
Рыборазведение в УЗВ