FISH-AGRO | Оборудование для разведения рыб
Технологии, проекты и оборудование для разведения рыбы в УЗВ. Рыбоводство и рыба разведение в Установках Замкнутого Водоснабжения! Тилапиа, Клариевый Сом, Осетр, Форель.
+7(925) 536-30-20

Мальковый (инкубационно-мальковый) цех

   Мальковый (инкубационно-мальковый) цех, цех для подращивания молоди – отделение рыбной фермы, в которое поступает личинка (оплодотворенная икра) рыбы а на выходе получается молодь принятого на ферме размера (обычно от 10 до 30 гр.) и приученная к условиям выращивания на ферме.

   Выращивание жизнеспособной молоди является очень важным этапом в рыбоводстве,  потому что от этого зависит весь успех выращивания рыбы в целом. При этом не играет особой роли, используются на рыбной ферме половые продукты, полученные от собственных производителей, или на других фермах закупается оплодотворённая икра, личинка или очень мелкий малёк. Закупать подращенную молодь на других фермах, как правило, нецелесообразно, потому что это даст возможность поставщику молоди произвести отбор, оставив наиболее крепкую и быстрорастущую молодь у себя. Правда это не означает обязательно, что молодь будет действительно слабой или тугорослой, потому что при изменении условий выращивания может измениться и критерий отбора, и медленно растущая рыба в одних условиях может быстрее расти в других. Во многих случаях мальковый цех дополнительно оснащается аппаратами для инкубации икры, т.е. становится инкубационно-мальковым. Мальковые цеха, как правило, достаточно универсальны, т.е. в них в принципе можно подращивать молодь разных видов рыб, хотя и не одновременно.

 Для выращивания молоди практически всех видов рыб вполне экономически оправдан специальный мальковый цех с полноценной УЗВ и регулируемой температурой. Это позволяет растить молодь в строго контролируемых условиях, при высоких плотностях посадки, и растить молодь быстро, что позволяет с одной стороны получить раньше посадку для основных сооружений выращивания рыбы на ферме, с другой стороны провести несколько циклов подращивания молоди, например, до 2 при выращивание лососевых или 3 при выращивание осетровых. В настоящее время в России имеются осетровые фермы, которые оснащены отдельными линиями с охлаждением воды, они могут получать половые продукты и/или личинку практически круглый год, поэтому количество циклов выращивания молоди может быть увеличено. В межсезонье, когда не осуществляется подращивания молоди основного вида, можно использовать мощности малькового цеха для разведения других видов рыб, например, теплолюбивых или декоративных (золотая рыбка или карпы-кои). Можно использовать такие цеха и для разведения диких и культурных видов рыб с целью зарыбления водоёмов.

  УЗВ малькового цеха состоит из рыбоводных ванн, чаще всего двух типоразмеров, насосного приямка с основным и резервным насосом, фильтра механической очистки (необязательно), биофильтра, системы оксигенации - озонирования, выдерживателя воды, системы подачи и сбора воды, теплообменника (подогревателя). Механический фильтр может не использоваться в случае, если загрузка биофильтра свободно плавающая и имеется возможность «стряхивать» с неё лишние биообрастания. Выдерживатель воды предназначен для выдерживания обработанной озоно-кислородной смесью воды некоторое время с целью гарантированного распада остаточного озона, потому что молодь рыб очень чувствительна к нему, кроме того выдерживатель это некоторый запас готовой воды. Для подпитки УЗВ малькового цеха применяется только артезианская вода, причём в том случае, если она содержит повышенные концентрации железа, это практически не скажется на содержании железа в оборотной воде. Потребление свежей воды очень незначительно и может быть периодическим, а не непрерывным. Для подогрева воды можно применять простейший самодельный теплообменник, в качестве греющей стороны через который проходит вода системы отопления.

   Часто мальковые цеха создаются не на пустом месте, а на месте старых с прямоточным водоснабжением цехов. В этом случае можно применять для модернизации цеха имеющиеся сооружения, такие как сливные каналы, трубопроводы, ёмкости, ванны и т.п.

   Имеющийся опыт говорит о том, что с одной стороны выращивание при высоких плотностях посадки хорошо закаляет молодь. С другой стороны, даже тщательное обеззараживание воды не гарантирует от вспышек заболеваний. В таких УЗВ вполне возможно применение бактериостатических средств, таких как метиленовый синий, на работе биофильтра это практически не сказывается.

Оксигенация и озонирование

    Оксигенация и Озонирование.

 

 Оксигенация (оксигенирование) – насыщение воды растворенным кислородом с использованием кислородного газа, который содержит большую долю кислорода, чем атмосферный воздух

   В рыбоводстве применяются следующие разновидности осксигенации воды:

  • пневматическая оксигенация, суть которой состоит в подаче кислорода в воду через мелкодисперсные распылители. Это не самый эффективный метода, так как КПД использования кислорода, как правило, невысок. Применяется в основном при перевозке живой рыбы;
  • механическая оксигенация, суть которой состоит в механическом смешение кислорода с водой. Это более эффективный метод, позволяющий растворять кислород почти целиком. Механические оксигенаторы выпускаются несколькими зарубежными фирмами и устанавливаются, как правило, непосредственно в рыбоводные бассейны или подающие каналы;
  • распылительная оксигенация под давлением, суть которой состоит в распылении воды в кислороде внутри герметичного оксигенатора(например, оксигенаторы конструкции И.В. Проскуренко). Это достаточно эффективный метод, позволяющий насыщать воду кислородом до высоких концентраций. При этом метод довольно энергозатратный, требующий высокого давления как воды, так и кислорода;
  • струйная оксигенация, основанная на гидродинамическом эффекте увеличения скорости в сужении, что обеспечивает как эжекцию (всасывание) так и дробление кислорода в воде, в чистом виде в рыбоводстве не применяется и является слишком энергозатратным;
  • оксигенация с применением оксгенационных конусов. Суть этой технологии сводится к тому, что вертикально установленный широкой частью вниз конус является ловушкой для пузырьков газа при движении воды сверху вниз. Из-за того, что в узкой части конуса скорость движения воды выше скорости всплывания пузырьков, а в нижней части скорость движения воды ниже этой скорости, газ не может никуда выйти из конуса. Если соотношение газа и воды, а также давление внутри конуса подобраны правильно, то весь введённый в него кислород нацело растворяется в воде.

   В качестве источников кислорода для систем осксигенации могут использоваться как покупной сжатый или сжиженный кислород, так и кислород, вырабатываемый на месте из воздуха при помощи PSA или VPSA генераторов кислорода. Использование сжатого кислорода в баллонах экономически невыгодно и используется только при перевозке рыбы или в аварийных ситуациях. В Европе многие рыбные фермеры используют сжиженный кислород, тогда как в бывшем СССР генераторы кислорода оказываются экономически выгоднее. Как правило, чем выше давление кислорода на выходе генератора, тем больше он потребляет электроэнергии. Кроме этого, кислород, полученный из баллонов или жидкого кислорода, не пригоден в использовании для синтеза озона.

   Применение осксигенации экономически оправдано во всех случаях, когда рыбу растят в бассейнах или ваннах, но не садках или прудах. При этом работа должна быть организована таким образом, чтобы концентрация кислорода в ёмкостях с рыбой не превышала 150% от насыщения (равновесия с атмосферным воздухом), более высокие концентрации не сказываются положительно на выращивание рыбы. При выращивании малька и молоди желательно не превышать 100 – 110% чтобы молодь имела впоследствии адаптивные свойства жить и расти при разных и реальных концентрациях растворенного кислорода.

   Нами разработана и внедрена собственная система осксигенации, которая представляет собой сочетание конусного и струйного методов. При этом используются конусы из нержавеющей стали собственного производства, которые обладают исключительной коррозионной стойкостью. Они могут работать как при заданном давлении, так и без давления и обеспечивать желаемую концентрацию кислорода (до 500%) в желаемом количестве воды. Применение струйных аппаратов перед конусами позволяют повысить эффективность их работы, кроме того снимают все требования к давлению кислорода, что позволяет использовать генераторы кислорода низкого давления, которые потребляют меньше электроэнергии. Таким образом, оксигенация может быть оптимизирована по затратам электроэнергии. Все материалы, которые используются в системе осксигенации, являются озоностойкими, поэтому в такую систему в любое время на линии кислорода может быть врезан генератор озона подходящей производительности и система обеспечит растворение озона в воде вместе с кислородом без необходимости что-либо менять и утилизировать остаточный нерастворённый озон в газе.

 

   Озонирование – обработка воды озоно-кислородной или озоно-воздушной смесью с целью очистки и/или обеззараживания.

    Озонирование воды в рыбоводстве может быть двух видов. Собственно, озонирование, целесообразно совмещенное с оксигенацией, позволяет вводить в воду до 4-5 мг озона на литр воды (чаще всего так много не нужно) с целью в первую очередь обеззараживания воды, также и для улучшения её химического состава (снижение нитритов, окисление некоторых токсичных органических загрязнений, снижение цветности, дезодорация). При таком подходе на каждый миллиграмм озона в воду вводится 10-15 мг кислорода. Делается такое озонирование вместе с вышеописанной нашей системой осксигенации путём врезания в линию кислорода генератора озона. Современные генераторы озона позволяют электрическим путём регулировать производство озона от 0 до 100% их производительности, т.о. можно легко регулировать дозу озона в зависимости от загрязнённости воды так чтобы не вызвать отравление остаточным в воде озоном рыбы и получать нужную степень обеззараживания и очистки.

   Второй вид озонирования является в чём-то аналогом флотации для морской воды. При этом пресная вода пенится гораздо хуже морской, поэтому для того чтобы она пенилась, используется озоно-водушная смесь (чаще всего разбавленная воздухом озоно-кислородная смесь), мелкодисперсные озоностойкие распылители и другая конструкция реакторов чем для флотаторов (протеин-скимеров) морской воды. Такая обработка воды не насыщает её растворённым кислородом выше 100% и не гарантирует высокой степени обеззараживания или окисления нитритов, зато она даёт эффект удаления мелкодисперсных и коллоидных загрязнений и делает воду прозрачной при относительно небольших затратах электроэнергии.

УЗВ для выращивания осетровых

УЗВ для выращивания осетровых – высокотехнологичная рыбная ферма с установкой замкнутого водоснабжения, предназначенная для выращивания товарной рыбы отряда осетрообразных и их гибридов или получения товарной чёрной икры.

 Несмотря на существование большого количества проектов и разновидностей УЗВ для выращивания осетровых, все они не очень сильно отличаются друг от друга. Основные отличия состоят в конструкции и числе рыбоводных бассейнов, тогда как система очистки воды во всех случаях сводится к схеме: рыбоводные бассейны – механическая очистка – биологическая очистка – регулирование температуры – насыщение растворенным кислородом – обеззараживание – рыбоводные бассейны. Иногда какие-то этапы могут отсутствовать, совмещаться или меняться местами. Размещаются такие установки для условий нашего климата в хорошо утеплённом отапливаемом здании. Плотность посадки осетровых может достигать 60 кг/м2(при глубине 1 м 60 кг/м3). Производительность превышает 120 кг/м2.

   Опыт создания подобных систем говорит о том, что главными являются следующие факторы:

  • обеспечение рыбы растворенным в воде кислородом с учётом того, что кислород не может быть весь использован рыбой, как правило, концентрация кислорода в бассейнах близка к его концентрации на выходе бассейнов;
  • конструкция бассейнов должна обеспечивать вынос из них взвесей и осадков, кроме того бассейны должна просматриваться до дна, чтобы видеть поедаемость корма и погибших или очень ослабленных рыб;
  • биофильтр должен быть нормально обслуживаемым и иметь несколько избыточную по отношению к расчётной площадь полезной поверхности, поток воды через него должен быть достаточно равномерен без застойных безкислородных участков. Биозагрузка не должна быть слишком мелкопористой.
  • должно быть обеспечено как можно более равномерное поступление молоди в систему и как можно более равномерное извлечение (и, соответственно, сбыт) готовой продукции из системы.
  • ключевое оборудование жизнеобеспечения рыбы должно быть продублировано.

   Осетроводная ферма с УЗВ может быть автоматизирована, что уменьшит как количество ручного труда, так и уменьшит зависимость от добросовестности работников. Однако, опыт говорит о том, что живую рыбу в любом случае оставлять надолго без присмотра нельзя и заменить рыбовода компьютером невозможно.

  Мы считаем, что осетровая ферма с УЗВ может быть рентабельна начиная с производительности 25 тонн в год, при условии, что обслуживать её будут 1-2 человека, живущие непосредственно рядом с ней до производительности 100 – 120 тонн в год при условии, что её будут обслуживать 5-6 наёмных работников (не считая сбытовиков). При производительности выше 60 т/год ферма должна состоять из двух независимых модулей УЗВ, в один из которых входит мальковый цех и подращивание молоди, а во втором уже осуществляется доращивание рыбы до товара. Каждый модуль имеет независимую систему водообеспечения, свои собственное вспомогательное оборудование и т.п. и позволяет держать температуру воды, отличную от температуры в соседнем модуле.

 Для осетровой фермы с УЗВ используется, как правило, высокопроизводительное энергосберегающее импортное и отечественное оборудование и оборудование собственного производства, коррозионо-стойкие трубопроводы и т.п. Экономия на оборудовании часто в будущем приводит к большим потерям дорогой живорыбной продукции.

   Также должен быть предусмотрен резервный источник электропитания.

  Для подпитки свежей водой УЗВ-осетровника, например, на 100 т/год достаточно артезианской скважины производительностью до 10-12 м3 воды в час, меньшего, соответственно, меньше. Источник воды желательно также резервировать, например, имея собственную скважину иметь ещё и доступ к местному водопроводу на случай выхода из строя глубинного насоса. Необходимо также предусматривать куда сбрасывать отработанную воду с осадками, как правило, она содержит биогенные элементы (азот и фосфор) в количествах, вызывающих «цветение» водоёмов и сбрасывать её в них нельзя, только если через биопруд достаточной площади.

  Производство товарной чёрной икры, используя только УЗВ, вполне возможно, но является делом сомнительной рентабельности. Существуют фермы, которые помимо больших УЗВ и бассейнов имеют отдельные установки замкнутого водоснабжения с охладителями воды (чилерами), которые позволяют получать икру круглый год за счёт охлаждения-нагревания производителей. Чаще всего такие отдельные УЗВ с охлаждением небольшие и создание их не представляет особых трудностей. Однако, это выгодно, как правило, если речь идёт о получение небольших количеств икры с целью размножения, но не промышленном производстве товарной икры. Также выращивание производителей в УЗВ представляется затруднительным, поскольку рост производителей приходится, как правило, целенаправленно замедлять. В противном случае вырастают производители большой массы тела, но у них развивается ожирение, которое замедляет, а то и вовсе приостанавливает половое созревание. Представляется более выгодным выращивание в УЗВ осетровых до какого-то веса, несколько большего чем обычный товарный, например, 3 кг для ленско-русского гибрида, далее с помощью УЗИ-сканирования из них отбирать лучших самок для содержания в дальнейшем вне УЗВ, например, на тёплых водах ГРЭС или на естественных температурах на юге в более тёплом климате

Пресноводная УЗВ для передержки

Пресноводная УЗВ для передержки – установка замкнутого водообеспечения в цикле которой используется пресная вода, и назначение которой состоит во временном содержание гидробионтов без наращивания биомассы/кормления. Другое название - промышленный аквариум.

  Необходимость в подобных установках возникает весьма часто, потому что она обусловлена несовпадением производства и потребления рыбы. Покупателю хотелось бы чтобы рыба продавалась круглый год по одной цене возле его дома, тогда как производитель производит рыбу у себя на ферме далеко от покупателя и часто его производство носит сезонный характер.

   В отличие от промышленных аквариумов с морской водой, вода для пресноводных, как правило, обходится недорого, поэтому в большинстве случаев применение сложных и дорогих методов очистки воды, таких как биофильтрация, оказывается экономически нецелесообразным. Поэтому для содержания пресноводной рыбы (в общем случае гидробионтов, это могут быть и ракообразные) применяются упрощённые схемы УЗВ, состоящие из механической очистки и устройства обогащения воды растворённым кислородом за счёт аэрации или оксигенации. Проблема выделения аммонийного азота решается за счёт частичной постоянной подмены воды.

  Температура воды при этом поддерживается достаточно низкая, что позволяет гидробионтом одновременно не терять массу тела (они не питаются!) и одновременно уменьшить до минимума загрязнение воды. Чаще всего применяется водопроводная артезианская вода. Следует отметить, что применение охлаждения воды при помощи чилера обычно оказывается нецелесообразным и не только по причине дороговизны этого оборудования. Часто оказывается, что в каком-либо городе создаётся база передержки, с которой живая продукция потом расходится по магазинам, в этом случае температура воды на базе не должна быть значительно ниже температуры воды в аквариумах магазинов, поэтому обычно целесообразно поддерживать температуру водопроводной сети, которая везде оказывается примерно одинаковой.

    УЗВ для передержки может быть очень разных размеров от аквариумов в магазинах или на рынках для розничной торговли до баз передержки для оптовой торговли, которые поставляют в эти самые магазины.

   Можно рассмотреть подобного рода установку на простом примере. База передержки в Москве для оптовой торговли карпом. Карпа выгодно закупать оптом на юго-западе Беларуси и в Ростовской области России. Расстояние до обоих поставщиков примерно 1000 км, что означает, что возить маленькими машинами рыбу невыгодно. Типичная большая машина для перевозки живой рыбы имеет 10 контейнеров по 2,4 м3 каждый и может перевозить максимум 8 -10 тонн живого карпа. Соответственно и база передержки должна быть рассчитана на такое количество. Полезный объём емкостей должен быть не менее 40 м3, например, 10 емкостей по 4 м3. Если температура воды летом может быть выше 150 С, то потребуется оксигенация, при 100С можно обойтись аэрацией. Понадобятся насосы и барабанный фильтр, который может быть заменён на другой тип фильтра, например, полочный отстойник. В общем случае возможно обойтись и без механического фильтра, учитывая тот факт, что рыба проведёт в дороге сутки с хотя бы одной подменой воды и значительная часть взвешенных веществ может быть удалена с водой, в которой перевозилась рыба. Расход свежей воды при этом возрастёт. При температуре воды 150 потребуется не менее 50 м3/сутки свежей воды, при более низких температурах меньше. Целесообразно также иметь как аэрацию, так и оксигенацию, и насосы разной производительности больше и меньше, чтобы это оборудование можно было использовать в зависимости от загрузки и температуры. Для работы летом необходимо предусмотреть кондиционирование воздуха.  Целесообразно предусмотреть также разгрузку большой машины вместе с водой непосредственно в ёмкости базы передержки и удобство загрузки малых машин для доставки потребителям для снижения трудозатрат.

Основа очистных сооружений для содержания рыбы – это циркуляция воды.

Основа очистных сооружений для содержания рыбы – это циркуляция воды.

     УЗВ – установка замкнутого водоснабжения, СОВ – система оборотного водоснабжения, нагульные пруды и т.д. во всех этих системах для жизнедеятельности рыбы необходима постоянная циркуляция воды.

   УЗВ представляет собой ёмкости для выращивания рыбы и систему водоподготовки, включающая в себя – механическую, биологическую и физико-химическую очистку, с возможностью поддержания и регулировки температурных режимов, с системами насыщения воды кислородом, стерилизацией озоном или УФ, доливом и сбросом воды.

    Каждое УЗВ проектируется и делается под конкретный вид и товарную навеску выращиваемой рыбы. К примеру, если вы рассчитываете выращивать осетровых для получения икры, необходимо понимать по какой технологии вы будете получать икру – методом забоя самок или прижизненным получением икры. То же самое и с конечной навеской товарной рыбы. Если вы собираетесь выращивать рыбу товарной навеской 500 гр. или 1 кг у вас изначально должна быть по-разному спроектирована система. К великому сожалению универсальных УЗВ не бывает. 

Мы можем спроектировать любую рыбоводную ферму по выращиванию многих видов рыб, вычислить её себестоимость, потребление ресурсов, производительность в зависимости от навески и рассчитать процесс выращивания.
  Как мы работаем, вы нам предоставляете информацию со своими пожеланиями, мы готовим коммерческое предложение, если все всех устраивает, мы готовим проект, подбираем оборудование и материалы и занимаемся воплощением проекта.

Система оборотного водоснабжения (СОВ) для выращивания форели

Система оборотного водоснабжения (СОВ) для выращивания форели – среднетехнологичная рыбная ферма в которой применяется УЗВ с большой подменой свежей воды и которая расположена вне отапливаемого помещения, предназначенная для выращивания форели или других холодолюбивых видов.

 Применение высокотехнологичного УЗВ для выращивания форели, аналогичного УЗВ для осетровых, оказывается невыгодным по следующим причинам:

  • при более низких температурах, которые требуются для форели, снижается скорость биологической очистки, это означает, что требуется биофильтр большего размера, чем для осетровых при той же производительности
  • форель может успешно, хотя и не так быстро как при оптимальных температурах, расти при температурах артезианской воды, которая имеется обычно в достаточном количестве. Для поддержания подобных температур не требуется высокотехнологичное УЗВ в отапливаемом помещении.

   По этим причинам для выращивания форели целесообразно применять упрощённый вариант УЗВ – систему оборотного водоснабжения (СОВ). Наиболее рациональный вариант СОВ представляет собой бетонные сооружения, чаще всего прямоугольной формы, частично заглубленные в грунт, частично обвалованные грунтом. Сооружение делится внутренними перегородками на каналы для выращивания рыбы, отделение механической, биологической очистки, подающие каналы. Циркуляция воды осуществляется безнасосным способом – при помощи воздушного эрлифта, который также и является основным источником обогащения воды растворённым кислородом.

 Такая система постоянно подпитывается достаточно большим количеством свежей артезианской воды. Например, для СОВ на 100 т форели в год требуется до 50 м3 воды в час. Артезианская вода не должна содержать общего железа более 0,5 мг/л, при большем содержании железа выращивание форели таким методом на артезианской воде невозможно. В некоторых случаях можно для подпитки системы использовать поверхностную (речную, озёрную) воду. Зимой артезианская вода служит для предотвращения замерзания системы, летом для предотвращения перегрева. В условиях умеренного климата чем выше исходная температура артезианской воды, тем лучше. В связи со значительно большей проточностью свежей воды через СОВ в сравнении с УЗВ, вода, вытекающая из СОВ, менее загрязнена и обычно может быть сброшена в открытые водоёмы.

  Следует отметить, что часто такие системы строятся вообще без реальной биологической очистки, когда мощность биофильтра заведомо в несколько раз меньше необходимой и он работает больше как механических фильтр. В этом случае аммонийный азот, выделяемой рыбой просто «вымывается» из системы водой. Это несколько удешевляет систему и делает её ближе к простой прямоточной, но сильно замедляет рост рыбы (чем снижает производительность) особенно в летние месяцы, потому что не позволяет воде подогреваться под воздействием солнечного излучения.

   В качестве механического фильтра может применяться керамзит или подобный материал с периодической регулярной промывкой, так и пластиковые тонкослойные отстойники. Очевидно, что последние эффективнее, но дороже. Дополнительно, сооружение СОВ может накрываться на зиму или на постоянно светостабилизированной полиэтиленовой плёнкой или листовым поликарбонатом, что позволяет зимой и в межсезонье сохранять более высокую температуру и тем ускорить рост рыбы и увеличить производительность. Укрывать имеет смысл только системы с полноценным биофильтром. В таких системах возможно и применение кислорода с механическими оксигенаторами, устанавливаемыми в общий подающий канал после эрлифта, работающие только в летние самые тёплые месяцы. В хорошо оснащённых, особенно укрытых системах, летом поддерживается температура 14-160 С, зимой не ниже 50 С, что обеспечивает значительное ускорения роста рыбы по сравнению с выращиванием в открытых водоёмах в садках.

   Обычно в СОВ по выращиванию товарной форели сажается молодь штучной навеской начиная с 25 – 30 г. Такую молодь можно покупать и привозить с других ферм. Также для получения такой молоди иногда рядом строят дополнительную маленькую СОВ, но лучше использовать полноценный мальковый цех с УЗВ.

 

      Гидрохимия

  Мы рассмотрим только те вопросы гидрохимии, которые имеют отношение к рыбоводству. Важными показателями воды с точки зрения рыбоводства являются:

  1. солевой состав;
  2. растворённый кислород;
  3. рН;
  4. аммонийный азот в связи с рН;
  5. нитриты и нитраты;
  6. БПК и органические загрязнения;
  7. железо и тяжёлые металл
  1. Солевой состав воды.

   Солевой состав морской воды рассмотрен в соответствующем разделе по морской воде.  Однако, пресная вода также содержит соли, которые имеют значение для использования этой воды в рыбоводстве. Соли натрия и хлора, в пресной воде, значения не имеют, но соли кальция и магния важны. Прежде всего, следует отметить, что слабоминерализованная вода или вода, обессоленная обратным осмосом, не пригодна для питания УЗВ. Это связано с тем, что такая вода не обладает свойством т.н. буферности, т.е. свойством сохранять свой водородный показатель рН при добавление незначительных количеств кислоты. В УЗВ постоянно происходит процесс окисления аммонийного азота, выделяемого рыбой, в нитрат, что эквивалентно добавлению в воду небольших количеств азотной кислоты. Если вода содержит достаточное количество гидрокарбонатов и других подобных ионов, то они будут нейтрализовать эту кислоту и рН воды заметно не изменится. В случае слабоминерализованной воды рН быстро упадёт, вода станет кислой и непригодной для рыбоводства, кроме того скорость биологического окисления иона аммония в нитрат-ион начнёт замедляться.

   С другой стороны, слишком жёсткая вода вредна для рыбы и создаёт повышенную нагрузку на её органы выведения (почки). Кроме того, применение слишком жесткой воды может вызвать засорение осадками солей кальция микроэкранов барабанных фильтров, вентилей и т.п. Подходящая жёсткость воды для питания УЗВ или СОВ находится в переделах 2 – 8 мг-экв./л, тогда как для питания систем, более близких к прямоточным, подходит вода и с меньшей жёсткостью. Вода с жёсткостью более 10 мг-экв./л потребует дополнительного умягчения.

     2. Растворённый кислород.

  В артезианской воде, используемой для питания УЗВ или СОВ растворённого кислорода нет и он вводится в неё искусственно при помощи аэрации и/или оксигенации. Однако, внутри самой УЗВ или СОВ, также, как и в любой системе, использующей природную прямоточную воду (сетчатые садки, пруды, бассейны и т.п.), растворённый кислород является важнейшим показателем, обуславливающим успех производства. Для успешного выращивания практически любой рыбы (кроме рыб, способных дышать кислородом воздуха, таких как клариевые сомы) концентрация кислорода должна находится в т.н. «зоне неограниченного роста», т.е. когда рыба не затрачивает никакой дополнительной энергии на обеспечение своего тела кислородом. Для большинства видов рыб нижний предел «зоны неограниченного роста» составляет 50 – 70% от насыщения (равновесия с атмосферным воздухом), причём если для карповых рыб ближе к 50%, то для лососевых 70%.  Если концентрация кислорода падает ниже, то рост рыбы замедляется, кормовой коэффициент (затраты корма на 1 кг прироста рыбы) увеличивается, и рыбоводство становится менее рентабельным. При повышении температуры выше оптимальных значений нижний предел сдвигается вверх, это связано как с уменьшением растворимости кислорода в воде, так и с увеличением его потребления при повышении температуры. Так, например, считается, что радужная форель может выдерживать до 230 С, тогда как выше, даже при близком к 100% насыщении воды растворённым кислородом, расход кислорода не компенсируется и начинается гибель. Применение оксигенации и насыщения выше 100% позволяет форели выдерживать эту и даже ещё немного более высокие температуры. С другой стороны, слишком высокие концентрации растворённого кислорода также нежелательны (см. Оксигенация)

   Даже рыб, способных дышать атмосферным воздухом, например, клариевого сома, необходимо растить при минимальной концентрации растворённого кислорода, равной 2 мг/л. Это связано как с наличием т.н. «кожного дыхания», т.е. близкие к поверхности ткани снабжаются кислородом, поступающим снаружи, так и с тем, чтобы избежать каких-либо анаэробных процессов внутри рыбоводных емкостей и трубопроводов, при которых могут образовываться токсичные для рыб загрязнения воды.

    3. Водородный показатель рН.

 Водородный показатель – это обратный десятичный логарифм концентрации в воде водородных ионов. Полностью нейтральной воде соответствует рН = 7, если рН>7, то вода имеет щелочную среду, если рН<7, то кислую. Рыба может жить только в узком диапазоне рН в пределах 6 – 9.

   Морская вода содержит много солей, в том числе и гидрокарбонаты и имеет рН 8,2 – 8,3. Благодаря высокому значению рН и большой буферности (см. выше) морская вода не подвержена «закислению» при работе в УЗВ. Но из-за её высокого рН морские гидробионты более чувствительны к иону аммония (см. ниже).

   Если понятно, что высокие значения рН непригодны из-за выделения рыбой аммиака (см. ниже), то низкие значения делают воду непригодной из-за выделения рыбой свободной углекислоты СО2. В воде постоянно существует химическое равновесие

   СО2+Н2СО3 ó Н+ + НСО3- ó 2Н+ + СО32-

  Равновесие в щелочной среде смещается в правую сторону – связываются ионы водорода, а в кислой среде смещается в левую – концентрация ионов водорода повышается.

   Зависимость соотношения свободной СО2 и связанной от рН отражена в таблице

 

 

значение рН

4

5

6

7

8

9

10

11

12

форма соединения

содержание соединения в % при 25*С

CO2 + H2CO3

100

95

70

20

2

-

-

-

-

HCO3\-

-

5

30

80

98

95

70

17

2

CO3\2-

-

-

-

-

-

5

30

83

98

 

 

   Организм рыбы постоянно выделяет свободную углекислоту и при росте концентрации её в воде такое выделение осложняется. До какой-то концентрации свободной СО2 это может компенсироваться специальными механизмами организма рыбы, что потребует дополнительной энергии (и как следствие, увеличения кормового коэффициента), выше какой-то рыба начинает отравляться не выведенным из организма СО2.  В сооружениях очистки УЗВ значительная часть свободной СО2 удаляется за счёт аэрации (уходит с прошедшим через воду воздухом в атмосферу). Тем не менее, часто в УЗВ, особенно высокотехнологичном, за счёт работы биофильтра рН падает. В этом случае приходится для его поддержания добавлять в воду вещества, имеющие щелочную природу (чаще всего соду NaHCO3 или известь Ca(OH)2) или поддерживать воду в постоянном контакте с известняком для поддержания рН.

   4. Аммонийный азот в связи с рН.

   Сам по себе ион аммония NH4+ не ядовит для рыб, как и случае с СО2, организм рыбы выделяет свободный аммиак NH3 через жабры. Выделение аммиака, как правило, прямо пропорционально количеству съеденного корма, обратно пропорционально кормовому коэффициенту и зависит сильно от состава корма.

   Аммиак и ион аммония находятся в химическом равновесии

   NH3 + H+ ó NH4+,

 

Температура

Содержание NH3 (в %) при значениях pH

°С

6,0

7,0

7,5

8,0

8,2

8,4

8,6

8,8

25

0,05

0,53

1,70

5,1

7,8

11,9

17,6

25,3

15

0,03

0,26

0,80

2,5

3,9

6,1

9,2

14,0

5

0,01

0,12

0,37

1,2

1,8

2,9

4,5

6,9

 

 

 

 

 

 

 

которое в щелочной среде смещается влево – связывание ионов водорода, а в кислой вправо. Кроме рН сильно влияет температура. Зависимость соотношения свободного и связанного аммиака приведена в таблице. 

   Концентрация свободного аммиака, с которой начинается угнетение большинства видов рыб составляет 0,05 мг/л. Исходя из этого, в типичном УЗВ-осетровнике при температуре 200 С и рН = 7,5 доля свободного аммиака от общего составит 1,2%, т.е. 0,012. Отсюда максимальная общая концентрация аммония может составлять 0,05/0,012 = 4 мг/л. Очевидно, что при большем рН или более высокой температуре меньше, да и держать постоянно вблизи критических значений нельзя, поэтому в УЗВ-осетровнике обычная концентрация общего аммония поддерживается в пределах 1 – 2 мг/л.

   В морской воде при рН = 8,2 и той же температуре доля свободного аммиака составит примерно 5,8% или 0,058. В этих условиях максимальная концентрация аммония может составить  0,05/0,058 = 0,86 мг/л. Именно этот факт является причиной того, что биофильтры, созданные для работы на морской воде, всегда работают на пресной, тогда как биофильтры, созданные для работы на пресной воде, не обязательно смогут работать на морской.

 

    5. Нитраты и нитриты.

  Считается, что нитраты NO3- для рыбы нетоксичны и она может выдерживать до1000 мг/л. Также считается, что нитраты не проникают в ткани рыбы и рыба, выращенная при высоких концентрациях нитратов не накапливает их в своих тканях. В типичных УЗВ такая концентрация нитрата обычно не достигается. В первую очередь за счёт их вымывания из системы, но в некоторых случаях значительное поглощение нитратов может происходить и на биофильтре (при определенной конструкции и режиме работы биофильтра) несмотря на высокое содержание кислорода там в воде. Тем не менее, в случае, если необходимо свети к минимуму (почти к нулю) водопотребление, необходимо предусматривать денитрификацию.

   В отличие от нитратов, нитриты NO2- сильно токсичны для рыб. Часто нитриты называют «ядом крови», потому что они, взаимодействуя с гемоглобином крови нарушают перенос кислорода к тканям. Признак длительного воздействия повышенных концентраций нитритов на рыб – изменения цвета жабр с ярко красных, но почти коричневые. Предельно допустимой концентрацией нитритов считается 0,25 мг/л.

   В УЗВ небольшие концентрации нитрита всегда присутствуют, это связано с двухступенчатым механизмом работы нитрифицирующей микрофлоры. При запуске биофильтров, как правило, на какой-то стадии случается «всплеск» нитритов. Это связано с тем что химическая реакция окисления аммония в нитрит имеет значительно больший энергетический выход, чем химическая реакция окисления нитрита в нитрат, поэтому микрофлора, осуществляющая первую стадию нитрификации, растёт намного быстрее. В какой-то момент складывается ситуация, когда микрофлора, производящая нитриты, уже выросла, а микрофлора, преобразующая нитрит в нитрат ещё нет. Бороться с первоначальным всплеском можно тем, чтобы нагрузка на биофильтр росла медленно, желательно, вместе с рыбой.

  Нитриты легко окисляются в нитраты озоном, по этой причине озонирование является надёжным методом снижения концентрации нитритов.

   6. БПК и органические загрязнения.

 БПК – биологическое потребление кислорода. Обычно применяется показатель БПК5 – биологическое потребление кислорода за 5 суток. Этот показатель показывает, сколько кислорода нужно для биологического окисления органических загрязнений воды. Т.о. БПК показывает не просто сколько органических загрязнений содержится в воде, но и насколько они легко биохимически разрушаемы. Само по себе БПК воды никак не влияет на рыбоводство, за исключением того что может потребоваться несколько больше кислорода, так как некоторая (незначительная) его часть может пойти на окисление загрязнений, а не только на дыхание рыб.

   Некоторые органические загрязнения могут быть токсичными для рыб. Это в основном те, которые образуются при анаэробном (в отсутствии кислорода) разложении органических веществ и осадков. Такие процессы могут происходить как в биофильтре так и в самих рыбоводных бассейнах, если их конструкция не обеспечивает вымывание осадков и/или если проток воды через них слишком низкая.

   7. Железо и тяжёлые металлы.

 Железо, содержащее в артезианской воде, иногда не позволяет использовать её для рыбоводных целей. Для подпитки УЗВ с незначительной подменой воды достаточно чтобы концентрация общего железа не превышала 2-3 мг/л. Для выращивания форели требования более жёсткие: железа не должно быть более 0,5 мг/л. Для приготовления морской воды железа вообще не должно быть более 0,1 мг/л. Особенно вредно оказывается для рыбоводства закисное железо, которое при контакте с растворённым в воде кислородом быстро превращается в окисное, которое начинает медленно коагулировать и выпадать в осадок, забивая рыбе, особенно мальку, жабры и затрудняя газообменные процессы. Помимо железа в природных водах иногда встречается марганец. В общем случае он ведёт себя подобно железу, т.е. также выпадает в осадок в нейтральной среде при контакте с растворённым в воде кислородом. Но к концентрации марганца требования жестче чем к железу, вода для рыбоводства не должна содержать его выше 0,3 мг/л. 

  Наличие в воде других металлов, таких как медь, хром, никель и т.п. не допускается, потому что такие металлы могут накапливаться в тканях тела рыбы и делать её фактически несъедобной. Такие металлы редко встречаются в природных водах, если они присутствуют, то чаще всего они вызваны антропогенным загрязнением воды.

Употребление 2-3 рыбных блюд во время беременности защитит будущего ребенка от развития астмы

С чем это связано?

Употребление 2-3 рыбных блюд во время беременности защитит будущего ребенка от развития астмы, сообщает журнал Science Daily.
Все дело в омега-3 жирных кислотах

Ученые из Университета Южной Флориды пришли к выводу, что дети, чьи мамы ежедневно в течение последних трех месяцев беременности употребляли большое количество омеги-3 жирных кислот, намного реже страдают от заболеваний дыхательной системы.

Такое заключение они сделали, внимательно изучив два разных исследования. В ходе первого американские физиологи наблюдали за 346 беременными женщинами, употреблявшими омегу-3 жирные кислоты, и 349 женщинами, употреблявшими плацебо. Родившихся впоследствии детей ученые разбили на три группы, в зависимости от уровня содержания полиненасыщенных жирных кислот в крови. Оказалось, что более здоровое потомство появилось от матерей, активно налегавших на рыбу или рыбий жир.
Еще один «рыбный» эксперимент

Во время другого эксперимента беременных на позднем сроке разделили на “рыбную” группу, группу плацебо и группу “без жира”. Первые две категории участниц ежедневно употребляли омегу-3 жирные кислоты, третья могла на свое усмотрение есть рыбу или пить рыбий жир. В итоге астма реже развивалась у тех, в чьем рационе было больше полезных кислот.



“Омега-3 жирные кислоты не могут вырабатываться организмом человека, но тем не менее они остаются важнейшими нутриентами, — говорит один из авторов ревью Чен Лин. — Беременные женщины не должны пренебрегать ими”.

Его коллеги уточняют, что 2-3 рыбных блюда в неделю не только защитят будущих детей от астмы, но и в целом укрепят их здоровье.

Аммонийный азот в воде и земле

Аммонийный азот в воде и земле

Биогенный элемент, который активнейшим образом участвует в процессах биогидроценоза, - аммонийный азот.

Экологическая ситуация
В водоёмах можно наблюдать изменение содержания этого элемента: весной его становится меньше, зато летом, в связи с благоприятным температурным режимом, значительно увеличивается его концентрация, поскольку массированно разлагаются органические вещества.
И это кардинальным образом влияет на санитарное состояние водоёмов, что заставляет усиливать контроль за жизнеспособностью экосистемы. Предельно допустимой концентрацией в водоёмах, где ловят рыбу, считается та, где аммонийный азот не превышает 0,39 миллиграммов на литр.

В воде
Скопление белкового азота подвержено аммонификации, и этот процесс разлагает белки до аммонийного состояния. Сточные воды очищают при помощи этого источника азота, если в них имеется источник углеродного питания для клеток. Интенсивное использование наступает в периодах фазы их роста , а когда начинается окисление, аммонийный азот высвобождается в виде аммиака. Далее он окисляется до состояния нитритов и затем нитратов, или же повторно участвует в уже новом синтезе.
Для того чтобы аммонийный азот удалить из водоёма, применяется клиноптилолит, тогда вода восстанавливает свои качества. Ставятся градирни в тёплое время года, а зимой их заменяют ионообменные установки, благодаря которым вредные вещества удаляются из сточных вод. Постоянно проводятся анализы, берутся пробы на азот аммонийный в воде, который из взятой пробы отгоняется, а затем в полученном дистилляте определяется его количество.

Как очистить водоём
Существует в природе ионообменный материал, который называется клиноптилолит (класс цеолитов). Именно с его помощью целесообразно восстанавливать чистоту воды. Азот аммонийный в воде растворяется не полностью, поэтому сначала нужно освободить её от всех взвешенных веществ, после чего подавать воду на клиноптилолитовые фильтры. Это довольно дорогая очистка, но зато самая эффективная - достигает девяноста семи процентов.
Регенерация потребует внесения раствора хлористого натрия - пяти- или десятипроцентного. Загрузку после этого нужно отмыть водой. Из раствора будет выделяться аммиак, который можно поглотить серной кислотой, чтобы образовался сульфат аммония, который очень хорош как удобрение. Азот аммонийный в сточных водах, а также азотосодержащие органические соединения удаляют различными видами перегонки, экстракции, адсорбции.

Способы получения удобрений
Этот метод хорош, если необходимо определение аммонийного азота. Другие его формы, которые встречаются в тех же удобрениях, - амидная, нитратная - именно этим методом определить нельзя. Сначала нужно извлечь азот аммонийный, в сточных водах, например, его предостаточно. Об этом методе написано выше. Далее навеску будущего удобрения нужно поместить в колбу и пролить раствором соляной кислоты (концентрация должна быть молярной - 0,05 моль на дм3). Колбу необходимо встряхивать специальным аппаратом не менее получаса, после чего можно настаивать до пятнадцати часов.

Далее раствор снова взболтать и отфильтровать сквозь складчатый сухой фильтр. Тем же раствором соляной кислоты промыть содержимое фильтра как минимум трижды, затем объём фильтрата нужно довести до первоначального опять же раствором кислоты. Таким образом, во-первых, состоялось определение азота аммонийного в воде, а во-вторых - определение количества его в полученном удобрении. Последнее колеблется от сорока до ста пятидесяти миллиграммов на литр, а капролактама в этом же растворе содержится от восьми до восьмидесяти миллиграммов на литр. Если содержание аммонийного азота - менее двадцати миллиграммов, то опыт не удастся, и этот метод не применяется.
Источники загрязнения
Самые характерные особенности производственных сточных вод - нестабильный химический состав, необходимый период адаптации для развития микрофлоры, избыток соединений органического и минерального происхождения азота. Перед произведением биологической очистки на очистных сооружениях сточные воды смешиваются с бытовыми и хозяйственными и таким образом усредняются. Азот аммонийный (формула NH4+) является обязательным компонентом сточных вод.
Источниками загрязнения могут являться сточные воды самых разных отраслей промышленности - от пищевой и медицинской до металлургической, коксохимической, микробиологической, химической и нефтехимической. Сюда же можно отнести все хозяйственно-бытовые стоки, навозные, сельскохозяйственные - с полей. В результате разлагаются белковые вещества и мочевина, а нитриты и нитраты анаэробно восстанавливаются.

Влияние на организм
На человеческий организм такие соединения влияют крайне отрицательно. Аммиак денатурирует белки, вступая с ними в реакцию. Тогда клетки и, соответственно, ткани организма перестают дышать, наблюдается поражение центральной нервной системы, печени, органов дыхания, нарушается работа сосудов. Если использовать регулярно воду с высоким содержанием аммония, страдает кислотно-щелочной баланс, начинается ацидоз.
Поэтому нельзя допускать использование выше нормы органических и минеральных удобрений в землепользовании, нужно постоянно бороться с излишним содержанием вредных веществ: например, азот аммонийный в почве обладает высокой растворимостью, поэтому и пища, и вода буквально отравлены им, его концентрации часто достигают токсического уровня. Особенно страдают от этого дети. Развивается метгемоглобинемия, кислородный режим в организме быстро разрушается, первым начинает страдать желудочно-кишечный тракт.

Предельные дозы

Единичные случаи заболевания метгемоглобинемией начинаются уже при содержании нитратов в воде до пятидесяти миллиграммов на литр, а когда концентрация их достигает девяноста пяти миллиграммов на литр, болезнь принимает массовый характер. В США, Франции, Нидерландах, ФРГ проведены детальные обследования, которые показали, что более пятидесяти миллиграммов нитратов на литр можно встретить в пятидесяти процентах случаев. Грунтовые и колодезные воды несут в десятки раз превышающую предел концентрацию нитратов - до полутора тысяч миллиграммов на литр, в то время как Всемирная организация здравоохранения установила предел в сорок пять миллиграммов. И это вода, которую пьют люди! А уж сточные воды очищаются многими способами - и биологической фильтрацией, и окислением озоном, и гипохлоритами щёлочноземельных металлов, и аэрацией, и сорбцией, при которой используются цеолиты натриевой формы, и ионообменными смолами, и обрабатывают сильными щелочами, и флотацией, и восстанавливают аммоний металлическим магнием, и добавляют растворы хлорида магния с тринатрийфосфатом. Однако технологии очистки всегда намного отстают от технологий загрязнения. Биогенные вещества В природных водах растворяется газ (NH3) аммиак, когда происходит биохимический распад органических соединений, в том числе и аммонийного азота. Тогда образуются и накапливаются другие соединения - аммоний-ион и азот аммонийный. Растворённый аммиак попадает в водоёмы с подземным или поверхностным стоком, со сточными водами, с атмосферными осадками. Если концентрация иона аммония (NH4+) превысит фоновое значение, это будет означать появление нового и близкого источника загрязнения. Это могут быть как животноводческие фермы или скопления навоза, так и бесхозно брошенные азотные удобрения, как отстойники промышленности, так и очистные коммунальные сооружения. А соединения азота, углерода, фосфора, которые содержатся в сточных водах, попадая в водоёмы, приносят значительный ущерб экологии практически всех регионов России. Очистка сточных вод день ото дня становится всё более актуальной, поскольку концентрация вредных веществ, в том числе и азотных соединений, зачастую просто зашкаливает. Это сказывается не только на питьевой воде. Быстро накапливают нитраты практически все овощи и фрукты, они содержатся в траве и зерне, которые поедает скот.

Содержание в водоёмах NH3 и NH4
Водоёмы всегда в нескольких переходных формах содержат азот: аммонийных солей и аммиака, альбуминоидного азота (органического), нитритов (солей азотистой кислоты) и нитратов (солей азотной кислоты). Всё это образуется вместе с процессом минерализации азота, но в большей мере поступает со сточными водами. Теперь водоёмы необходимо чистить. Соединения азота приходят на очистные сооружения в виде азота нитратов, азота нитритов, аммонийного азота и азота, связанного органическими соединениями. Сточные воды хозяйственно-бытового плана имеют небольшую концентрацию таких веществ, большую часть отправляет в водоёмы промышленность.
В процессе очистки соотношение массовых концентраций всех форм азотных соединений постоянно изменяется. Состав сточных вод становится другим уже при транспортировке, потому что мочевина, которая содержится в бытовых и хозяйственных сточных водах, взаимодействуя с бактериями, распадается и образует аммоний-ион. Чем протяжённее сеть канализации, тем дальше зайдёт этот процесс. Иногда содержание аммоний-иона при входе на очистку составляет до пятидесяти миллиграммов на кубический дециметр, что очень и очень много.
Органический азот
Это азот, который находится в составе органических веществ - протеидов и протеинов, полипепсидов (высокомолекулярных соединений), аминокислот, карбамидов (низкомолекулярных соединений), аминов, амидов. Вся органика, в том числе и азотосодержащая, попадает в сточные воды, после чего азотные соединения подвергаются аммонизации. Органического азота в сточных водах много, иногда до семидесяти процентов всех азотных соединений. Но в результате аммонизации на канализационном пути к очистным сооружениям приходит органического азота не более пятнадцати процентов.
Далее происходит уже рукотворная биологическая очистка. Первый этап - нитрификация, то есть переделка соединений азота за счёт определённых видов микроорганизмов, которые азот аммония окисляют, в нитрат-ион и нитрит-ион. Нитрифицирующих бактерий можно не опасаться - они к внешним условиям очень восприимчивы и легко вытесняются. А вот нитраты, если попадают в водоём, приводят его к гибели, поскольку являются великолепной питательной средой для разнообразной микрофлоры. Именно поэтому из экосистемы нитраты необходимо выводить.

Нитриты и нитраты

Если сточные воды проникают сквозь почву, то аммонийный азот под влиянием некоторых бактерий превращается сначала в нитриты, потом в нитраты. Преобладание и содержание разнообразных форм зависит от тех условий, которые складываются на момент поступления соединений с присутствием азота в почву, а затем в водоём. Во время паводка концентрация органических форм его значительно увеличивается, поскольку органические остатки бывают смыты с поверхности почвы, а летом уменьшаются так же значительно, потому что служат "едой" для различных водных организмов. Нитриты - промежуточная форма окисления аммонийного азота, стремящегося стать нитратами. В природных водах нитратов обычно не так много, если не случилось смыва удобрений с полей.

Почему нарушается баланс азота в искусственном водоёме?

Каждый владелец искусственного водоёма, населённого рыбой, желает, чтобы он был максимально похож на естественный, но при этом вода в искусственном пруду была прозрачной, высшие водные растения вокруг росли нормально, а водоросли, наоборот, чтобы сильно не развивались, рыба была здоровой. Поэтому основная задача каждого владельца искусственного водоёма, чтобы пруд выглядел замечательно – добиться баланса замкнутой экосистемы водоёма.

Почему нарушается баланс азота в искусственном водоёме??

В воду искусственного пруда постоянно попадает корм и продукты жизнедеятельности рыб. В процессе разложения этих остатков в воде образуется большое количество фосфора (P) и азота (N) в виде аммиака (NH3). Аммиак, в процессе окисления кислородом, преобразуется в нитрат (NO3). Фосфор и нитрат – это питательные вещества для растений. Правильное планирование искусственного водоёма позволяет удерживать количество нитратов и фосфатов в воде близким к нулю – и ваш искусственный водоём чувствует себя хорошо. Неправильное планирование приводит к сбою баланса и неспособности экосистемы искусственного пруда перерабатывать все поступающие питательные вещества. Происходит накопление их избытка и как следствие – неконтролируемый рост водорослей.

Эта опасность грозит любому виду искусственного водоёма – плавательному водоёму, декоративному водоёму, живому бассейну, садовому аквариуму, - неправильно спланированному и неправильно «настроенному» с точки зрения биологического баланса.

Азот.

Азот – важнейший элемент живой природы, поэтому важно правильно «настроить» его круговорот в любом искусственном водоёме.

Азот содержится в молекулах белка, пептидах, аминокислотах, в хлорофилле, в рибонуклеиновых кислотах, витаминах. Азот очень важен для жизни - без азота невозможен фотосинтез, образование хлорофилла, белка и продолжение рода. Азот в атмосфере находится в виде газа. Молекула азота состоит из двух атомов азота (N2) очень сильно связанных друг с другом. Редкие живые организмы имеют «механизм», позволяющий разорвать эту связь, поэтому газообразный азот, даже растворённый в воде не участвует в обороте питательных веществ. Вместо этого весь азот входит в оборот веществ в виде аммиака (NH3).

Откуда азот берётся в воде искусственного водоёма?

Рыбы, поедая корм, загрязняют водоём экскрементами. Растения обновляются, какие-то части их отмирают. В остатках корма, в продуктах жизнедеятельности рыб, в гниющих тканях растений, в прочих разлагающихся органических отложениях есть белок. Всё что содержит белок, содержит и азот. Бактерии минерализуют (минерализация это разрушение органической субстанции до неорганических веществ) все перечисленные органические остатки, в результате из белка получается аммиак (NH3), который далее окисляется до аммония (NH4+). Также, аммиак производится рыбами и выделяется в воду через их жабры, производится грибками и бактериями. Вообще аммиак это побочный продукт биологических процессов всех организмов. Азот в виде аммиака попадает в водоём и начинается процесс, который можно назвать «круговорот азота в природе» или азотный цикл.

 

Круговорот азота в природе.

Круговорот азота состоит из двух частей – нитрификации и денитрификации.

Нитрификацией называется процесс, при котором аммиак (NH3) преобразуется в нитрит (NO2), а нитрит преобразуется в нитрат (NO3).

Денитрификацией называется процесс, при котором нитрат (NO3) преобразуется в нитрит (NO2), а нитрит преобразуется в азот (N2).

Эти процессы в основном происходят в грунте искусственного водоёма.

Нитрификация.

Находящиеся в водоёме нитрифицирующие бактерии окисляют аммоний до нитрита, в результате реакции помимо нитрита получается водород и вода и выделяется энергия. Эту энергию бактерии используют для своей жизнедеятельности. Полученный нитрит другие нитрифицирующие бактерии окисляют до менее токсичного нитрата. Оба процесса проходят в водной среде и в верхних слоях грунта, для обоих процессов нужно, чтобы в воде было большое количество кислорода. По этой причине нитрификация – это так называемый аэробный процесс.

Большинство получившегося нитрата потребляется растениями для своего роста, часть выводится с ежедневными подменами воды, а часть участвует во втором процесс – денитрификации.

Денитрификация.

Денитрификация – это процесс анаэробный, проходящий без потребления кислорода. Если нитрификация проходит в воде и в верхних слоях грунта, то денитрификация проходит в нижних слоях грунта водоёма, куда не попадает кислород. Одни микроорганизмы, находящиеся в грунте, преобразуют нитрат (NO3), полученный в процессе нитрификации, в нитрит (NO2). Другие, находящиеся в грунте микроорганизмы – денитрифицирующие, преобразуют нитриты в газообразный азот (N2), который покидает водоём. И те и другие бактерии в этих процессах получают из соединений азота кислород для своей жизнедеятельности.

Баланс разных культур бактерий в грунте.

В грунте живут культуры множества бактерий. Есть бактерии анаэробные, а есть те, что в зависимости от содержания кислорода в воде становятся или аэробными, или анаэробными. Аэробные бактерии не только поставляют нитрат для анаэробных, но и благодаря большому потреблению кислорода создают умеренноанаэробные условия. Возникает взаимновыгодный обмен между двумя типами бактерий живущих в нескольких сантиметрах верхнего слоя грунта (поэтому беспокоить субстрат в водоёме чисткой грунта водным «пылесосом» крайне нежелательно). Анаэробные бактерии разлагают нитрат до газообразного оксида азота [NO] - безвредного газа. Он растворяется в воде и выветривается в атмосферу, завершая круговорот азота.

Часть нитрата превращается анаэробными бактериями обратно в нитрит и аммоний. Если азот в этом случае не будет употреблен корнями растений, он превращается бактериями в газ азот [N2], химически инертный и безвредный, который растворяется в воде и выветривантся обратно в атмосферу. Со временем процессы выравниваются, и денитрификация протекает одновременно с нитрификацией в грунте в анаэробных зонах.

Важно!

Корни водных растений способны доставлять кислород в грунт, уничтожая анаэробные зоны. В субстрате из крупного гравия вообще не будет анаэробных условий. В субстрате, составленном из гравия разного размера вероятнее всего будут образовываться локальные бескислородные зоны, в которых возможно протекание денитрификации.

 

Конкуренция за аммоний.

Лабораторные тесты показали, что растения и водоросли НЕ потребляют нитрат в заметных количествах пока есть аммоний. Не стоит беспокоиться о полной нитрификации потому что в водоёме с большим количеством растений, любая дополнительная конкуренция за азот (в составе аммония) будет ухудшать рост растений. Слишком активное преобразование бактериями аммония [NH4+] в нитрит [NO2] отнимает основной источник азота для питания растений.

Влияние уровня pH воды на круговорот азота.

Уровень pH играет решающую роль в нитрификации: интенсивнее этот процесс протекает при pH более 7,2 и достигает своего максимума при pH=8,3. При pH менее 7,0 интенсивность нитрификации составляет 50%, при pH=6,5 только 30%. Таким образом в водоёме в котором pH=6.8-7.2 создаются благоприятные условия для потребления аммония [NH4+] именно растениями, а не нитрифицирующими бактериями в грунте и фильтре.

Нитрифицирующие бактерии плохо конкурируют за кислород с бактериями разлагающими органику в грунте - теми, что образуют "биологическую потребность в кислороде", что еще больше увеличивает шансы растений употребить весь доступный аммиак [NH3] раньше нитрифицирующих бактерий.

В искусственном водоёме с большим количеством растений при pH=6.8-7.2 почти весь образовавшийся аммоний будет потреблен растениями до того, как его успеют переработать нитрифицирующие бактерии. Этим растения способствуют снижению уровня нитратов. Позднее при подрезке растений азот (нитраты) выведется из водоёма.

 

Вред, наносимый аммиаком.

Аммиак (NH3) ОЧЕНЬ токсичен для рыб, уже при содержании аммиака всего около 0,05% у рыб возникает хроническое поражение жабр. Со временем оно становится необратимым. Поэтому важно, чтобы как можно быстрее попавший в воду аммиак преобразовался бактериями во много раз менее токсичное соединение – аммоний (NH4).

Процесс преобразования аммиака в аммоний зависит от pH фактора воды. С падением pH все больше аммиака превращается в нетоксичный аммоний, например, при понижении pH на один градус токсичного аммиака становится в десять раз меньше. При pH=7.0 аммиака примерно 0,33%, при pH=6.0 - только 0,03%.

На деятельность нитрифицирующих бактерий, которые окисляют аммиак, также влияют температура воды и концентрация в воде кислорода.

Чем выше температура - тем больше доля токсичного аммиака. При 28 градусах в воде содержится вдвое больше токсичного аммиака, чем при 20 градусах (при равном pH).

Нитрифицирующие бактерии требуют много кислорода. Для протекания нитрификации содержание кислорода в воде должно быть не менее 1 мг/л.

Для обогащения воды кислородом используются аэраторы, которые подбираются исходя из объёма искусственного водоёма.

Оценка количества, попадающего в воду, азота.

Белки в среднем содержат 16% Азота. Чтобы посчитать сколько Азота вы вносите в аквариум с кормом для рыб, посмотрите содержание белка в корме, посчитайте его массу и умножьте на 0,16. Вы получите количество азота в данном корме. Например, если на банке корма массой 1 кг. написано, что в корме содержится 48% белка, это значит, что в данной банке 1000 х 0,48 = 480 грамм белка, который содержит 16% азота, т. е. - 480 х 0,16 = 76,8 грамм азота.

Плюс к этому азот, получаемый из продуктов жизнедеятельности рыб и от гниющих остатков растений.

При неправильном планировании искусственного водоёма биологические процессы не нормализуются, и поступивший в пруд азот начинает потребляться водорослями. При этом, из 1 грамма азота получается до 3-х килограммов биологической массы. Ваш искусственный водоём быстро превращается в болото!

 

Подводя итоги.

Для того чтобы процессы в Вашем водоёме нормализовались быстрее необходимо учесть и провести следующие действия:

- запланировать достаточную зону регенерации – площадь зоны должна соответствовать площади открытой воды для купания

- при засыпке зоны регенерации использовать грунт разных фракций, для создания условий нормального существования анаэробных бактерий

- засадить зону регенерации достаточным количеством высших водных растений

- внести в воду комплекс прудовых бактерий

- создать условия для нормальной аэрации воды – фонтаныаэраторы, циркуляция воды – ручьикаскады

- не производить механическую очистку дна водоёма, чтобы не нарушить условия существования анаэробных бактерий

- вовремя осуществлять подрезку высших водных растений

- не добавлять в водоём химические вещества, применяемые для очистки воды в бассейнах.

- следить за pH фактором воды.

Аэрация воды подводными аэраторами


Назад Вперед
Наверх
Tel.:+7(925) 536-30-20 E-Mail: fish-agro@mail.ru
 

Уважаемые посетители!
Мы рады приветствовать Вас на сайте
Fish-Agro -Технологии и оборудование,.
Рыборазведение в УЗВ

Бизнес УЗВ

Рыборазведение в УЗВ

Барабанные фильтры

Рыборазведение в УЗВ

Бассейны

Рыборазведение в УЗВ

Озонаторы

Рыборазведение в УЗВ

РМУ

Рыборазведение в УЗВ

Рецепты блюд

Рыборазведение в УЗВ